


Hilberînerê Xwerû ya Gloverî, Integrator, Hevkar, Hevkarê Derveyî Ji bo Cûreyek Berfireh a Hilber û Karûbaran.
Em ji bo çêkirin, çêkirin, endezyarî, yekbûn, yekbûn, derxistina hilber û karûbarên xwerû yên çêkirî û yên li derveyî refê çavkaniya weya yek-rawest in. Ger hûn bixwazin, em di heman demê de etîketa taybet / spî hilberên we bi navê marqeya we nîşan didin.
Zimanê xwe hilbijêre
Hilberîna Xweser a Parçe, Pêkhatî, Meclîs, Berhemên Qediyayî, Makîne û Amûrên Pîşesaziyê
Hilberîna Peymana Navxweyî û Gerdûnî
Manufacturing Outsourcing
Kirîna Navxweyî, Gerdûnî ya Berhemên Pîşesazî
Etîketkirina taybet / Spî Hilberên xwe bi navê marqeya xwe nîşankirin
Karûbarên Dîtina Hilber & Cihgirtin
Sêwirana gerdûnî û Hevkariya Kanal
Endezyariya Entegrasyonê
Xizmetên Endezyariyê
Hevgirtina Gerdûnî, Warehousing, Logistics
Encamên Lêgerînê
164 results found with an empty search
- Automation Robotic Systems Manufacturing | agstech
Motion Control, Positioning, Motorized Stage, Actuator, Gripper, Servo Amplifier, Hardware Software Interface Card, Translation Stages, Rotary Table,Servo Motor Otomasyon & Hilberîn û Civîna Pergalên Robotîk Being an engineering integrator, we can provide you AUTOMATION SYSTEMS including: • Motion control and positioning assemblies, motors, motion controller, servo amplifier, motorized stage, lift stage, goniometers, drives, actuators, grippers, direct drive air bearing spindles, hardware-software interface cards and software, custom built pick and place systems, custom built automated inspection systems assembled from translation/rotary stages and cameras, custom built robots, custom automation systems. We also supply manual positioner, manual tilt, rotary or linear stage for simpler applications. A large selection of linear and rotary tables/slides/stages that utilize brushless linear direct-drive servomotors, as well as ball screw models driven with brush or brushless rotary motors are available. Air bearing systems are also an option in automation. Depending on your automation requirements and application, we choose translation stages with suitable travel distance, speed, accuracy, resolution, repeatability, load capacity, in-position stability, reliability...etc. Again, depending on your automation application we can supply you either a purely linear or linear/rotary combination stage. We can manufacture special fixtures, tools and combine them with your motion control hardware to turn them into a complete turnkey automation solution for you. If you require also assistance with installing drivers, code writing for specially developed software with user friendly interface, we can send our experienced automation engineer to your site on a contract basis. Our engineer can directly communicate with you on a daily basis so that at the end you have a custom tailored automation system free of bugs and meeting your expectations. Goniometers: For high-accuracy angular alignment of optical components. The design utilizes direct-drive noncontact motor technology. When used with the multiplier, it provides a positioning speed of 150 degrees per second. So whether you are thinking of an automation system with a moving camera, taking snapshots of a product and analyzing the images acquired to determine a product defect, or whether you are trying to reduce manufacturing leadtimes by integrating a pick and place robot to your automated manufacturing, call us, contact us and you will be glad with the solutions we can provide you. ROBOTS and COBOTS Here are brochures of some off-shelf robots you can download. If you wish we can build you customized robots and cobots that will better fit your needs and applications. We can either redesign and modify existing robot platforms or make new designs for you. Click on blue colored text below to download catalogs: - Collaborative Robots - Customized Agricultural Robots - Customized Commercial Places Robots - Customized Health Care and Hospital Robots - Customized Warehousing Robots - Customized Robots for a Variety of Applications - Food and Beverage Delivery Robot-A302-A302D - Hospital Delivery Robot A801 - Indoor Delivery Robots A301-A301A - Indoor Delivery Robot A305 - Mobile Robot Platform A001 - Robotic Laser Welding Workstation - Robotics Product Brochure - Robotics Workstations - Robot Palletizing Workstation - Robotic Vending Machine A406 - Security Robot A602 - Selection Guide of Industrial Robot Platforms - Small Objects Transfer Robot A503 - Warehouse Logistics Robots A201-A201A - Welding Robots Brochure OTHER ALTERNATIVE ROBOTS and COBOTS No one design or product meets every customer's needs. Below are downloadable brochures for our other products. - Hikrobot Mobile Robots Catalog - Hikvision Logistic Vision Solutions AUTOMATION COMPONENTS AND SPARE PARTS Click on highlighted text to download brochures and catalogs of products you can use as accessories, spare components in building automation systems, robots and cobots: - Barcode and Fixed Mount Scanners - RFID Products - Mobile Computers - Micro Kiosks OEM Technology (We private label these with your brand name and logo if you wish) - Barcode Scanners (We private label these with your brand name and logo if you wish) - Fixed Industrial Scanners (We private label these with your brand name and logo if you wish) - Hikrobot Machine Vision Products - Hikrobot Smart Machine Vision Products - Hikrobot Machine Vision Standard Products - Kinco automation products, including HMI, stepper system, ED servo, CD servo, PLC, field bus. - Kiosk Systems (We private label these with your brand name and logo if you wish) - Kiosk Systems Accessories Guide (We private label these with your brand name and logo if you wish) - Linear Bearings, Die-Set Flange Mount Bearings, Pillow Blocks, Square Bearings and various Shafts & Slides for motion control - Mobile Computers for Enterprises (We private label these with your brand name and logo if you wish) - Motor Starter with UL and CE Certification NS2100111-1158052 - Printers for Barcode Scanners and Mobile Computers (We private label these with your brand name and logo if you wish) - Process Automation Solutions (We private label these with your brand name and logo if you wish) - RFID Readers - Scanners - Encoders - Printers (We private label these with your brand name and logo if you wish) - Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals Download brochure for our CUSTOM MACHINE AND EQUIPMENT MANUFACTURING Dowload brochure for our DESIGN PARTNERSHIP PROGRAM If you are looking for industrial computers, embedded computers, panel PC for your automation system, we invite you to visit our industrial computers store at http://www.agsindustrialcomputers.com If you would like to obtain more information about our engineering and research & development capabilities besides manufacturing capabilities, then we invite you to visit our engineering site http://www.ags-engineering.com CLICK Product Finder-Locator Service RÛPERA BERÊ
- Functional Decorative Coatings - Thin Film - Thick Films - AR Coating
Functional & Decorative Coatings, Thin Film, Thick Films, Antireflective and Reflective Mirror Coating - AGS-TECH Inc. Kişandinên Fonksiyonî / Kulîlkên Dekoratîf / Fîlma nazik / Fîlma stûr A COATING is a covering that is applied to the surface of an object. Coatings can be in the form of THIN FILM (less than 1 micron thick) or THICK FILM (over 1 micron thick). Based on the purpose of applying the coating we can offer you DECORATIVE COATINGS and/or FUNCTIONAL COATINGS, or both. Sometimes we apply functional coatings to change the surface properties of the substrate, such as adhesion, wettability, corrosion resistance, or wear resistance. In some other cases such as in semiconductor device fabrication, we apply the functional coatings to add a completely new property such as magnetization or electrical conductivity which become an essential part of the finished product. Our most popular FUNCTIONAL COATINGS are: Adhesive Coatings: Examples are adhesive tape, iron-on fabric. Other functional adhesive coatings are applied to change the adhesion properties, such as non-stick PTFE coated cooking pans, primers that encourage subsequent coatings to adhere well. Tribological Coatings: These functional coatings relate to the principles of friction, lubrication and wear. Any product where one material slides or rubs over another is affected by complex tribological interactions. Products like hip implants and other artificial prosthesis are lubricated in certain ways whereas other products are unlubricated as in high temperature sliding components where conventional lubricants can not be used. The formation of compacted oxide layers have been proven to protect against wear of such sliding mechanical parts. Tribological functional coatings have huge benefits in industry, minimizing wear of machine elements, minimizing wear and tolerance deviations in manufacturing tools such as dies and moulds, minimizing power requirements and making machinery and equipment more energy efficient. Optical Coatings: Examples are Anti-reflective (AR) coatings, reflective coatings for mirrors, UV- absorbent coatings for protection of eyes or for increasing the life of the substrate, tinting used in some colored lighting, tinted glazing and sunglasses. Catalytic Coatings such as applied on self-cleaning glass. Light-Sensitive Coatings used to make products such as photographic films Protective Coatings: Paints can be considered protecting the products besides being decorative in purpose. Hard anti-scratch coatings on plastics and other materials are one of our most widely used functional coatings to reduce scratching, improve wear resistance, …etc. Anti-corrosion coatings such as plating are also very popular. Other protective functional coatings are put on waterproof fabric and paper, antimicrobial surface coatings on surgical tools and implants. Hydrophilic / Hydrophobic Coatings: Wetting (hydrophilic) and unwetting (hydrophobic) functional thin and thick films are important in applications where water absorption is either desired or undesired. Using advanced technology we can alter your product surfaces, to make them either easily wettable or unwettable. Typical applications are in textiles, dressings, leather boots, pharmaceutical or surgical products. Hydrophilic nature refers to a physical property of a molecule that can transiently bond with water (H2O) through hydrogen bonding. This is thermodynamically favorable, and makes these molecules soluble not only in water, but also in other polar solvents. Hydrophilic and hydrophobic molecules are also known as polar molecules and nonpolar molecules, respectively. Magnetic Coatings: These functional coatings add magnetic properties such as is the case for magnetic floppy disks, cassettes, magnetic stripes, magnetooptic storage, inductive recording media, magnetoresist sensors, and thin-film heads on products. Magnetic thin films are sheets of magnetic material with thicknesses of a few micrometers or less, used primarily in the electronics industry. Magnetic thin films can be single-crystal, polycrystalline, amorphous, or multilayered functional coatings in the arrangement of their atoms. Both ferro- and ferrimagnetic films are used. The ferromagnetic functional coatings are usually transition-metal-based alloys. For example, permalloy is a nickel-iron alloy. The ferrimagnetic functional coatings, such as garnets or the amorphous films, contain transition metals such as iron or cobalt and rare earths and the ferrimagnetic properties are advantageous in magnetooptic applications where a low overall magnetic moment can be achieved without a significant change in the Curie temperature. Some sensor elements function on the principle of change in electrical properties, such as the electrical resistance, with a magnetic field. In semiconductor technology, the magnetoresist head used in disk storage technology functions with this principle. Very large magnetoresist signals (giant magnetoresistance) are observed in magnetic multilayers and composites containing a magnetic and nonmagnetic material. Electrical or Electronic Coatings: These functional coatings add electrical or electronic properties such as conductivity to manufacture products such as resistors, insulation properties such as in the case of magnet wire coatings used in transformers. DECORATIVE COATINGS: When we speak of decorative coatings the options are only limited by your imagination. Both thick and thin film type coatings have been successfully engineered and applied in the past to our customers products. Regardless of the difficulty in the geometric shape and material of the substrate and application conditions, we are always capable to formulate the chemistry, physical aspects such as exact Pantone code of color and application method for your desired decorative coatings. Complex patterns involving shapes or different colors are also possible. We can make your plastic polymer parts look metallic. We can color anodize extrusions with various patterns and it won’t even look anodized. We can mirror coat an oddly-shaped part. Furthermore decorative coatings can be formulated that will also act as functional coatings at the same time. Any of the below mentioned thin and thick film deposition techniques used for functional coatings can be deployed for decorative coatings. Here are some of our popular decorative coatings: - PVD Thin Film Decorative Coatings - Electroplated Decorative Coatings - CVD and PECVD Thin Film Decorative Coatings - Thermal Evaporation Decorative Coatings - Roll-to-Roll Decorative Coating - E-Beam Oxide Interference Decorative Coatings - Ion Plating - Cathodic Arc Evaporation for Decorative Coatings - PVD + Photolithography, Heavy Gold Plating on PVD - Aerosol Coatings for Glass Coloring - Anti-tarnish Coating - Decorative Copper-Nickel-Chrome Systems - Decorative Powder Coating - Decorative Painting, Custom Tailored Paint Formulations using Pigments, Fillers, Colloidal Silica Dispersant...etc. If you contact us with your requirements for decorative coatings, we can provide you our expert opinion. We have advanced tools such as color readers, color comparators….etc. to guarantee consistent quality of your coatings. THIN and THICK FILM COATING PROCESSES: Here are the most widely used of our techniques. Electro-Plating / Chemical Plating (hard chromium, chemical nickel) Electroplating is the process of plating one metal onto another by hydrolysis, for decorative purposes, corrosion prevention of a metal or other purposes. Electroplating lets us use inexpensive metals such as steel or zinc or plastics for the bulk of the product and then apply different metals on the outside in the form of a film for better appearance, protection, and for other properties desired for the product. Electroless plating, also known as chemical plating, is a non-galvanic plating method that involves several simultaneous reactions in an aqueous solution, which occur without the use of external electrical power. The reaction is accomplished when hydrogen is released by a reducing agent and oxidized, thus producing a negative charge on the surface of the part. Advantages of these thin and thick films are good corrosion resistance, low processing temperature, possibility to deposit in bore holes, slots… etc. Disadvantages are the limited selection of coating materials, relatively soft nature of the coatings, environmentally polluting treatment baths that are needed including chemicals such as cyanide, heavy metals, fluorides, oils, limited accuracy of surface replication. Diffusion Processes (Nitriding, nitrocarburization, boronizing, phosphating, etc.) In heat treatment furnaces, the diffused elements usually originate from gases reacting at high temperatures with the metal surfaces. This can be a pure thermal and chemical reaction as a consequence of the thermal dissociation of the gases. In some cases, diffused elements originate from solids. The advantages of these thermochemical coating processes are good corrosion resistance, good reproducibility. The disadvantages of these are being relatively soft coatings, limited selection of base material (which must be suitable for nitriding), long processing times, environmental and health hazards involved, requirement of post-treatment. CVD (Chemical Vapor Deposition) CVD is a chemical process used to produce high quality, high-performance, solid coatings. The process produces thin films too. In a typical CVD, the substrates are exposed to one or more volatile precursors, that react and/or decompose on the substrate surface to produce the desired thin film. Advantages of these thin & thick films are their high wear resistance, potential to economically produce thicker coatings, suitability for bore holes, slots ….etc. Disadvantages of CVD processes are their high processing temperatures, difficulty or impossibility of coatings with multiple metals (such as TiAlN), rounding of edges, use of environmentally hazardous chemicals. PACVD / PECVD (Plasma-Assisted Chemical Vapor Deposition) PACVD is also called PECVD standing for Plasma Enhanced CVD. Whereas in a PVD coating process the thin & thick film materials are evaporated from a solid form, in PECVD the coating results from a gas phase. Precursor gasses are cracked in the plasma to become available for the coating. Advantages of this thin and thick film deposition technique is that significantly lower process temperatures are possible as compared to CVD, precise coatings are deposited. Disadvantages of PACVD are that it has only limited suitability for bore holes, slots etc. PVD (Physical Vapor Deposition) PVD processes are a variety of purely physical vacuum deposition methods used to deposit thin films by the condensation of a vaporized form of the desired film material onto workpiece surfaces. Sputtering and evaporative coatings are examples of PVD. Advantages are that no environmentally damaging materials and emissions are produced, a large variety of coatings can be produced, coating temperatures are below the final heat treatment temperature of most steels, precisely reproducible thin coatings, high wear resistance, low frictional coefficient. Disadvantages are bore holes, slots ...etc. can only be coated down to a depth equal to the diameter or width of the opening, corrosion resistant only under certain conditions, and for obtaining uniform film thicknesses, parts must be rotated during deposition. The adhesion of functional and decorative coatings are substrate dependent. Furthermore, the lifetime of thin and thick film coatings depends on environmental parameters such as humidity, temperature...etc. Therefore, before considering a functional or decorative coating, contact us for our opinion. We can choose the most suitable coating materials and coating technique that fits your substrates and application and deposit them under the strictest quality standards. Contact AGS-TECH Inc. for details of thin and thick film deposition capabilities. Do you need design assistance ? Do you need prototypes ? Do you need mass manufacturing ? We are here to help you. Click on blue colored text below to download product catalogs and brochures: - Private Label Nano Surface Protection Car Care Products We can label these products with your name and logo if you wish - Private Label Nano Surface Industrial Products We can label these products with your name and logo if you wish - Private Label Nano Surface Protection Marine Products We can label these products with your name and logo if you wish - Private Label Nano Surface Protection Products We can label these products with your name and logo if you wish CLICK Product Finder-Locator Service RÛPERA BERÊ
- Fiber Optic Components, Splicing Enclosures, FTTH Node, CATV Products
Fiber Optic Components - Splicing Enclosures - FTTH Node - Fiber Distribution Box - Optical Platform - CATV Products - Telecommunication Optics - AGS-TECH Inc. Berhemên Fiber Optîk We supply: • Fiber optic connectors, adapters, terminators, pigtails, patchcords, connector faceplates, shelves, communication racks, fiber distribution box, splicing enclosure, FTTH node, optical platform, fiber optic taps, splitters-combiners, fixed and variable optical attenuators, optical switch, DWDM, MUX/DEMUX, EDFA, Raman amplifiers and other amplifiers, isolator, circulator, gain flattener, custom fiberoptic assembly for telecommunication systems, optical waveguide devices, CATV products • Lasers and photodetectors, PSD (Position Sensitive Detectors), quadcells • Fiber optic assemblies for industrial applications (illumination, light delivery or inspection of pipe interiors, crevices, cavities, body interiors....). • Fiberoptic assemblies for medical applications (see our site http://www.agsmedical.com for medical endoscopes and couplers). Among the products our engineers have developed is a super slim 0.6 mm diameter flexible video endoscope, and a fiber end inspection interferometer. The interferometer was developed by our engineers for in-process and final inspection in manufacturing of fiber connectors. We use special bonding and attachment techniques and materials for rigid, reliable and long life assemblies. Even under extensive environmental cycling such as high temperature/low temperature; high humidity/low humidity our assemblies remain intact and keep working. Download our catalog for passive fiber optic components Download our catalog for active fiber optic products Download our catalog for free space optical components and assemblies Private Label Medical Endoscopes and Visualization Systems (We can put your company name and logo on these) CLICK Product Finder-Locator Service RÛPERA BERÊ
- Electronic Testers, Electrical Properties Testing, Oscilloscope, Pulse
Electronic Testers - Electrical Test Equipment - Electrical Properties Testing - Oscilloscope - Signal Generator - Function Generator - Pulse Generator - Frequency Synthesizer - Multimeter Amûrên Testê yên Elektrîkî û Elektronîkî With the term ELECTRONIC TESTER we refer to test equipment that is used primarily for testing, inspection and analysis of electrical and electronic components and systems. We offer the most popular ones in the industry: POWER SUPPLIES & SIGNAL GENERATING DEVICES: POWER SUPPLY, SIGNAL GENERATOR, FREQUENCY SYNTHESIZER, FUNCTION GENERATOR, DIGITAL PATTERN GENERATOR, PULSE GENERATOR, SIGNAL INJECTOR METERS: DIGITAL MULTIMETERS, LCR METER, EMF METER, CAPACITANCE METER, BRIDGE INSTRUMENT, CLAMP METER, GAUSSMETER / TESLAMETER/ MAGNETOMETER, GROUND RESISTANCE METER ANALYZERS: OSCILLOSCOPES, LOGIC ANALYZER, SPECTRUM ANALYZER, PROTOCOL ANALYZER, VECTOR SIGNAL ANALYZER, TIME-DOMAIN REFLECTOMETER, SEMICONDUCTOR CURVE TRACER, NETWORK ANALYZER, PHASE ROTATION TESTER, FREQUENCY COUNTER You can purchase brand new, refurbished or used test equipment from us at the most competitive discounted prices. Simply choose the product from the downloadable catalogs and let us know the product name, product code and relevant information and we will send you our quote. Download by clicking on highlighted text: ANRITSU Electronic Measuring Instruments FLUKE Test Tools Catalog KEYSIGHT Basic Automotive Test Products KEYSIGHT Basic Instruments KEYSIGHT Bench and Power Products KEYSIGHT Network Analyzer Products KEYSIGHT Signal Generation Solutions KEYSIGHT Smart Bench Essentials Series Products KEYSIGHT High-Volume Traffic Generator Products KEYSIGHT Layer 4-7 Network Test Products KEYSIGHT Layer 2-3 Network Test Products KEYSIGHT Distribution Products Catalog MEGGER Low Voltage Test Tools Catalog MICROWAVE Flexible Cable Assembly MICROWAVE and MILIMETER WAVE Test Accessories Brochure (Cable assemblies, VNA Test Assemblies, Mechanical Calibration Kits, RF Coaxial Adapters, Test Port Adapters, DC Blocks, NMD Connectors....etc.) Private Label Hand Tools for Every Industry (This catalog contains a few electrical & electronic test instruments. We can private label these hand tools if you wish. In other words, we can put your company name, brand and label on them. This way you can promote your brand by reselling these to your customers.) ROHDE SCHWARZ Benchtop Power Supplies Ideal for labs and system racks, galvanic isolation, floating channels, constant voltage or current modes, protection functions, parallel and serial operation, low ripple/noise, remote sensing option ROHDE SCHWARZ Test Equipment Catalog (Oscilloscopes, Power Supplies, Signal Generators, Handheld Analyzers, Spectrum Analyzers, Vector Network Analyzers, Meters & Counters) TEKTRONIX Product Catalog for Test and Measurement Solutions VANDAL-PROOF IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com Let us briefly go over some of these equipment in everyday use throughout the industry: The electrical power supplies we supply for metrology purposes are discrete, benchtop and stand-alone devices. The ADJUSTABLE REGULATED ELECTRICAL POWER SUPPLIES are some of the most popular ones, because their output values can be adjusted and their output voltage or current is maintained constant even if there are variations in input voltage or load current. ISOLATED POWER SUPPLIES have power outputs that are electrically independent of their power inputs. Depending on their power conversion method, there are LINEAR and SWITCHING POWER SUPPLIES. The linear power supplies process the input power directly with all their active power conversion components working in the linear regions, whereas the switching power supplies have components working predominantly in non-linear modes (such as transistors) and convert power to AC or DC pulses before processing. Switching power supplies are generally more efficient than linear supplies because they lose less power due to shorter times their components spend in the linear operating regions. Depending on application, a DC or AC power is used. Other popular devices are PROGRAMMABLE POWER SUPPLIES, where voltage, current or frequency can be remotely controlled through an analog input or digital interface such as an RS232 or GPIB. Many of them have an integral microcomputer to monitor and control the operations. Such instruments are essential for automated testing purposes. Some electronic power supplies use current limiting instead of cutting off power when overloaded. Electronic limiting is commonly used on lab bench type instruments. SIGNAL GENERATORS are another widely used instruments in lab and industry, generating repeating or non-repeating analog or digital signals. Alternatively they are also called FUNCTION GENERATORS, DIGITAL PATTERN GENERATORS or FREQUENCY GENERATORS. Function generators generate simple repetitive waveforms such as sine waves, step pulses, square & triangular and arbitrary waveforms. With Arbitrary waveform generators the user can generate arbitrary waveforms, within published limits of frequency range, accuracy, and output level. Unlike function generators, which are limited to a simple set of waveforms, an arbitrary waveform generator allows the user to specify a source waveform in a variety of different ways. RF and MICROWAVE SIGNAL GENERATORS are used for testing components, receivers and systems in applications such as cellular communications, WiFi, GPS, broadcasting, satellite communications and radars. RF signal generators generally work between a few kHz to 6 GHz, while microwave signal generators operate within a much wider frequency range, from less than 1 MHz to at least 20 GHz and even up to hundreds of GHz ranges using special hardware. RF and microwave signal generators can be classified further as analog or vector signal generators. AUDIO-FREQUENCY SIGNAL GENERATORS generate signals in the audio-frequency range and above. They have electronic lab applications checking of the frequency response of audio equipment. VECTOR SIGNAL GENERATORS, sometimes also referred to as DIGITAL SIGNAL GENERATORS are capable of generating digitally-modulated radio signals. Vector signal generators can generate signals based on industry standards such as GSM, W-CDMA (UMTS) and Wi-Fi (IEEE 802.11). LOGIC SIGNAL GENERATORS are also called DIGITAL PATTERN GENERATOR. These generators produce logic types of signals, that is logic 1s and 0s in the form of conventional voltage levels. Logic signal generators are used as stimulus sources for functional validation & testing of digital integrated circuits and embedded systems. The devices mentioned above are for general-purpose use. There are however many other signal generators designed for custom specific applications. A SIGNAL INJECTOR is a very useful and quick troubleshooting tool for signal tracing in a circuit. Technicians can determine the faulty stage of a device such as a radio receiver very quickly. The signal injector can be applied to the speaker output, and if the signal is audible one can move to the preceding stage of the circuit. In this case an audio amplifier, and if the injected signal is heard again one can move the signal injection up the stages of the circuit until the signal is no longer audible. This will serve the purpose of locating the location of the problem. A MULTIMETER is an electronic measuring instrument combining several measurement functions in one unit. Generally, multimeters measure voltage, current, and resistance. Both digital and analog version are available. We offer portable hand-held multimeter units as well as laboratory-grade models with certified calibration. Modern multimeters can measure many parameters such as: Voltage (both AC / DC), in volts, Current (both AC / DC), in amperes, Resistance in ohms. Additionally, some multimeters measure: Capacitance in farads, Conductance in siemens, Decibels, Duty cycle as a percentage, Frequency in hertz, Inductance in henries, Temperature in degrees Celsius or Fahrenheit, using a temperature test probe. Some multimeters also include: Continuity tester; sounds when a circuit conducts, Diodes (measuring forward drop of diode junctions), Transistors (measuring current gain and other parameters), battery checking function, light level measuring function, acidity & Alkalinity (pH) measuring function and relative humidity measuring function. Modern multimeters are often digital. Modern digital multimeters often have an embedded computer to make them very powerful tools in metrology and testing. They include features such as:: •Auto-ranging, which selects the correct range for the quantity under test so that the most significant digits are shown. •Auto-polarity for direct-current readings, shows if the applied voltage is positive or negative. •Sample and hold, which will latch the most recent reading for examination after the instrument is removed from the circuit under test. •Current-limited tests for voltage drop across semiconductor junctions. Even though not a replacement for a transistor tester, this feature of digital multimeters facilitates testing diodes and transistors. •A bar graph representation of the quantity under test for better visualization of fast changes in measured values. •A low-bandwidth oscilloscope. •Automotive circuit testers with tests for automotive timing and dwell signals. •Data acquisition feature to record maximum and minimum readings over a given period, and to take a number of samples at fixed intervals. •A combined LCR meter. Some multimeters can be interfaced with computers, while some can store measurements and upload them to a computer. Yet another very useful tool, an LCR METER is a metrology instrument for measuring the inductance (L), capacitance (C), and resistance (R) of a component. The impedance is measured internally and converted for display to the corresponding capacitance or inductance value. Readings will be reasonably accurate if the capacitor or inductor under test does not have a significant resistive component of impedance. Advanced LCR meters measure true inductance and capacitance, and also the equivalent series resistance of capacitors and the Q factor of inductive components. The device under test is subjected to an AC voltage source and the meter measures the voltage across and the current through the tested device. From the ratio of voltage to current the meter can determine the impedance. The phase angle between the voltage and current is also measured in some instruments. In combination with the impedance, the equivalent capacitance or inductance, and resistance, of the device tested can be calculated and displayed. LCR meters have selectable test frequencies of 100 Hz, 120 Hz, 1 kHz, 10 kHz, and 100 kHz. Benchtop LCR meters typically have selectable test frequencies of more than 100 kHz. They often include possibilities to superimpose a DC voltage or current on the AC measuring signal. While some meters offer the possibility to externally supply these DC voltages or currents other devices supply them internally. An EMF METER is a test & metrology instrument for measuring electromagnetic fields (EMF). Majority of them measure the electromagnetic radiation flux density (DC fields) or the change in an electromagnetic field over time (AC fields). There are single axis and tri-axis instrument versions. Single axis meters cost less than tri-axis meters, but take longer to complete a test because the meter only measures one dimension of the field. Single axis EMF meters have to be tilted and turned on all three axes to complete a measurement. On the other hand, tri-axis meters measure all three axes simultaneously, but are more expensive. An EMF meter can measure AC electromagnetic fields, which emanate from sources such as electrical wiring, while GAUSSMETERS / TESLAMETERS or MAGNETOMETERS measure DC fields emitted from sources where direct current is present. The majority of EMF meters are calibrated to measure 50 and 60 Hz alternating fields corresponding to the frequency of US and European mains electricity. There are other meters which can measure fields alternating at as low as 20 Hz. EMF measurements can be broadband across a wide range of frequencies or frequency selective monitoring only the frequency range of interest. A CAPACITANCE METER is a test equipment used to measure capacitance of mostly discrete capacitors. Some meters display the capacitance only, whereas others also display leakage, equivalent series resistance, and inductance. Higher end test instruments use techniques such as inserting the capacitor-under-test into a bridge circuit. By varying the values of the other legs in the bridge so as to bring the bridge into balance, the value of the unknown capacitor is determined. This method ensures greater precision. The bridge may also be capable to measure series resistance and inductance. Capacitors over a range from picofarads to farads may be measured. Bridge circuits do not measure leakage current, but a DC bias voltage can be applied and the leakage measured directly. Many BRIDGE INSTRUMENTS can be connected to computers and data exchange be made to download readings or to control the bridge externally. Such bridge instruments aso offer go / no go testing for automation of tests in a fast paced production & quality control environment. Yet, another test instrument, a CLAMP METER is an electrical tester combining a voltmeter with a clamp type current meter. Most modern versions of clamp meters are digital. Modern clamp meters have most of the basic functions of a Digital Multimeter, but with the added feature of a current transformer built into the product. When you clamp the instrument’s “jaws” around a conductor carrying a large ac current, that current is coupled through the jaws, similar to the iron core of a power transformer, and into a secondary winding which is connected across the shunt of the meter’s input, the principle of operation resembling much that of a transformer. A much smaller current is delivered to the meter’s input due to the ratio of the number of secondary windings to the number of primary windings wrapped around the core. The primary is represented by the one conductor around which the jaws are clamped. If the secondary has 1000 windings, then the secondary current is 1/1000 the current flowing in the primary, or in this case the conductor being measured. Thus, 1 amp of current in the conductor being measured would produce 0.001 amps of current at the input of the meter. With clamp meters much larger currents can be easily measured by increasing the number of turns in the secondary winding. As with most of our test equipment, advanced clamp meters offer logging capability. GROUND RESISTANCE TESTERS are used for testing the earth electrodes and the soil resistivity. The instrument requirements depend on the range of applications. Modern clamp-on ground testing instruments simplify ground loop testing and enable non-intrusive leakage current measurements. Among the ANALYZERS we sell are OSCILLOSCOPES without doubt one of the most widely used equipment. An oscilloscope, also called an OSCILLOGRAPH, is a type of electronic test instrument that allows observation of constantly varying signal voltages as a two-dimensional plot of one or more signals as a function of time. Non-electrical signals like sound and vibration can also be converted to voltages and displayed on oscilloscopes. Oscilloscopes are used to observe the change of an electrical signal over time, the voltage and time describe a shape which is continuously graphed against a calibrated scale. Observation and analysis of the waveform reveals us properties such as amplitude, frequency, time interval, rise time, and distortion. Oscilloscopes can be adjusted so that repetitive signals can be observed as a continuous shape on the screen. Many oscilloscopes have storage function that allows single events to be captured by the instrument and displayed for a relatively long time. This allows us to observe events too fast to be directly perceptible. Modern oscilloscopes are lightweight, compact and portable instruments. There are also miniature battery-powered instruments for field service applications. Laboratory grade oscilloscopes are generally bench-top devices. There is a vast variety of probes and input cables for use with oscilloscopes. Please contact us in case you need advice about which one to use in your application. Oscilloscopes with two vertical inputs are called dual-trace oscilloscopes. Using a single-beam CRT, they multiplex the inputs, usually switching between them fast enough to display two traces apparently at once. There are also oscilloscopes with more traces; four inputs are common among these. Some multi-trace oscilloscopes use the external trigger input as an optional vertical input, and some have third and fourth channels with only minimal controls. Modern oscilloscopes have several inputs for voltages, and thus can be used to plot one varying voltage versus another. This is used for example for graphing I-V curves (current versus voltage characteristics) for components such as diodes. For high frequencies and with fast digital signals the bandwidth of the vertical amplifiers and sampling rate must be high enough. For-general purpose use a bandwidth of at least 100 MHz is usually sufficient. A much lower bandwidth is sufficient for audio-frequency applications only. Useful range of sweeping is from one second to 100 nanoseconds, with appropriate triggering and sweep delay. A well-designed, stable, trigger circuit is required for a steady display. The quality of the trigger circuit is key for good oscilloscopes. Another key selection criteria is the sample memory depth and sample rate. Basic level modern DSOs now have 1MB or more of sample memory per channel. Often this sample memory is shared between channels, and can sometimes only be fully available at lower sample rates. At the highest sample rates the memory may be limited to a few 10's of KB. Any modern ''real-time'' sample rate DSO will have typically 5-10 times the input bandwidth in sample rate. So a 100 MHz bandwidth DSO would have 500 Ms/s - 1 Gs/s sample rate. Greatly increased sample rates have largely eliminated the display of incorrect signals that was sometimes present in the first generation of digital scopes. Most modern oscilloscopes provide one or more external interfaces or buses such as GPIB, Ethernet, serial port, and USB to allow remote instrument control by external software. Here is a list of different oscilloscope types: CATHODE RAY OSCILLOSCOPE DUAL-BEAM OSCILLOSCOPE ANALOG STORAGE OSCILLOSCOPE DIGITAL OSCILLOSCOPES MIXED-SIGNAL OSCILLOSCOPES HANDHELD OSCILLOSCOPES PC-BASED OSCILLOSCOPES A LOGIC ANALYZER is an instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, assembly language. Logic Analyzers have advanced triggering capabilities, and are useful when the user needs to see the timing relationships between many signals in a digital system. MODULAR LOGIC ANALYZERS consist of both a chassis or mainframe and logic analyzer modules. The chassis or mainframe contains the display, controls, control computer, and multiple slots into which the data-capturing hardware is installed. Each module has a specific number of channels, and multiple modules can be combined to obtain a very high channel count. The ability to combine multiple modules to obtain a high channel count and the generally higher performance of modular logic analyzers makes them more expensive. For the very high end modular logic analyzers, the users may need to provide their own host PC or purchase an embedded controller compatible with the system. PORTABLE LOGIC ANALYZERS integrate everything into a single package, with options installed at the factory. They generally have lower performance than modular ones, but are economical metrology tools for general purpose debugging. In PC-BASED LOGIC ANALYZERS, the hardware connects to a computer through a USB or Ethernet connection and relays the captured signals to the software on the computer. These devices are generally much smaller and less expensive because they make use of a personal computer’s existing keyboard, display and CPU. Logic analyzers can be triggered on a complicated sequence of digital events, then capture large amounts of digital data from the systems under test. Today specialized connectors are in use. The evolution of logic analyzer probes has led to a common footprint that multiple vendors support, which provides added freedom to end users: Connectorless technology offered as several vendor-specific trade names such as Compression Probing; Soft Touch; D-Max is being used. These probes provide a durable, reliable mechanical and electrical connection between the probe and the circuit board. A SPECTRUM ANALYZER measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of signals. There are optical and acoustical spectrum analyzers as well, but here we will discuss only electronic analyzers that measure and analyze electrical input signals. The spectra obtained from electrical signals provides us information about frequency, power, harmonics, bandwidth…etc. The frequency is displayed on the horizonal axis and the signal amplitude on the vertical. Spectrum analyzers are widely used in the electronics industry for the analyses of the frequency spectrum of radio frequency, RF and audio signals. Looking at the spectrum of a signal we are able to reveal elements of the signal, and the performance of the circuit producing them. Spectrum analyzers are able to make a large variety of measurements. Looking at the methods used to obtain the spectrum of a signal we can categorize the spectrum analyzer types. - A SWEPT-TUNED SPECTRUM ANALYZER uses a superheterodyne receiver to down-convert a portion of the input signal spectrum (using a voltage-controlled oscillator and a mixer) to the center frequency of a band-pass filter. With a superheterodyne architecture, the voltage-controlled oscillator is swept through a range of frequencies, taking advantage of the full frequency range of the instrument. Swept-tuned spectrum analyzers are descended from radio receivers. Therefore swept-tuned analyzers are either tuned-filter analyzers (analogous to a TRF radio) or superheterodyne analyzers. In fact, in their simplest form, you could think of a swept-tuned spectrum analyzer as a frequency-selective voltmeter with a frequency range that is tuned (swept) automatically. It is essentially a frequency-selective, peak-responding voltmeter calibrated to display the rms value of a sine wave. The spectrum analyzer can show the individual frequency components that make up a complex signal. However it does not provide phase information, only magnitude information. Modern swept-tuned analyzers (superheterodyne analyzers, in particular) are precision devices that can make a wide variety of measurements. However, they are primarily used to measure steady-state, or repetitive, signals because they can't evaluate all frequencies in a given span simultaneously. The ability to evaluate all frequencies simultaneously is possible with only the real-time analyzers. - REAL-TIME SPECTRUM ANALYZERS: A FFT SPECTRUM ANALYZER computes the discrete Fourier transform (DFT), a mathematical process that transforms a waveform into the components of its frequency spectrum, of the input signal. The Fourier or FFT spectrum analyzer is another real-time spectrum analyzer implementation. The Fourier analyzer uses digital signal processing to sample the input signal and convert it to the frequency domain. This conversion is done using the Fast Fourier Transform (FFT). The FFT is an implementation of the Discrete Fourier Transform, the math algorithm used for transforming data from the time domain to the frequency domain. Another type of real-time spectrum analyzers, namely the PARALLEL FILTER ANALYZERS combine several bandpass filters, each with a different bandpass frequency. Each filter remains connected to the input at all times. After an initial settling time, the parallel-filter analyzer can instantaneously detect and display all signals within the analyzer's measurement range. Therefore, the parallel-filter analyzer provides real-time signal analysis. Parallel-filter analyzer is fast, it measures transient and time-variant signals. However, the frequency resolution of a parallel-filter analyzer is much lower than most swept-tuned analyzers, because the resolution is determined by the width of the bandpass filters. To get fine resolution over a large frequency range, you would need many many individual filters, making it costly and complex. This is why most parallel-filter analyzers, except the simplest ones in the market are expensive. - VECTOR SIGNAL ANALYSIS (VSA) : In the past, swept-tuned and superheterodyne spectrum analyzers covered wide frequency ranges from audio, thru microwave, to millimeter frequencies. In addition, digital signal processing (DSP) intensive fast Fourier transform (FFT) analyzers provided high-resolution spectrum and network analysis, but were limited to low frequencies due to the limits of analog-to-digital conversion and signal processing technologies. Today's wide-bandwidth, vector-modulated, time-varying signals benefit greatly from the capabilities of FFT analysis and other DSP techniques. Vector signal analyzers combine superheterodyne technology with high speed ADC's and other DSP technologies to offer fast high-resolution spectrum measurements, demodulation, and advanced time-domain analysis. The VSA is especially useful for characterizing complex signals such as burst, transient, or modulated signals used in communications, video, broadcast, sonar and ultrasound imaging applications. According to form factors, spectrum analyzers are grouped as benchtop, portable, handheld and networked. Benchtop models are useful for applications where the spectrum analyzer can be plugged into AC power,such as in a lab environment or manufacturing area. Bench top spectrum analyzers generally offer better performance and specifications than the portable or handheld versions. However they are generally heavier and have several fans for cooling. Some BENCHTOP SPECTRUM ANALYZERS offer optional battery packs, allowing them to be used away from a mains outlet. Those are referred to as a PORTABLE SPECTRUM ANALYZERS. Portable models are useful for applications where the spectrum analyzer needs to be taken outside to make measurements or carried while in use. A good portable spectrum analyzer is expected to offer optional battery-powered operation to allow the user to work in places without power outlets, a clearly viewable display to allow the screen to be read in bright sunlight, darkness or dusty conditions, light weight. HANDHELD SPECTRUM ANALYZERS are useful for applications where the spectrum analyzer needs to be very light and small. Handheld analyzers offer a limited capability as compared to larger systems. Advantages of handheld spectrum analyzers are however their very low power consumption, battery-powered operation while in the field to allow the user to move freely outside, very small size & light weight. Finally, NETWORKED SPECTRUM ANALYZERS do not include a display and they are designed to enable a new class of geographically-distributed spectrum monitoring and analysis applications. The key attribute is the ability to connect the analyzer to a network and monitor such devices across a network. While many spectrum analyzers have an Ethernet port for control, they typically lack efficient data transfer mechanisms and are too bulky and/or expensive to be deployed in such a distributed manner. The distributed nature of such devices enable geo-location of transmitters, spectrum monitoring for dynamic spectrum access and many other such applications. These devices are able to synchronize data captures across a network of analyzers and enable Network-efficient data transfer for a low cost. A PROTOCOL ANALYZER is a tool incorporating hardware and/or software used to capture and analyze signals and data traffic over a communication channel. Protocol analyzers are mostly used for measuring performance and troubleshooting. They connect to the network to calculate key performance indicators to monitor the network and speed-up troubleshooting activities. A NETWORK PROTOCOL ANALYZER is a vital part of a network administrator's toolkit. Network protocol analysis is used to monitor the health of network communications. To find out why a network device is functioning in a certain way, administrators use a protocol analyzer to sniff the traffic and expose the data and protocols that pass along the wire. Network protocol analyzers are used to - Troubleshoot hard-to-solve problems - Detect and identify malicious software / malware. Work with an Intrusion Detection System or a honeypot. - Gather information, such as baseline traffic patterns and network-utilization metrics - Identify unused protocols so that you can remove them from the network - Generate traffic for penetration testing - Eavesdrop on traffic (e.g., locate unauthorized Instant Messaging traffic or wireless Access Points) A TIME-DOMAIN REFLECTOMETER (TDR) is an instrument that uses time-domain reflectometry to characterize and locate faults in metallic cables such as twisted pair wires and coaxial cables, connectors, printed circuit boards,….etc. Time-Domain Reflectometers measure reflections along a conductor. In order to measure them, the TDR transmits an incident signal onto the conductor and looks at its reflections. If the conductor is of a uniform impedance and is properly terminated, then there will be no reflections and the remaining incident signal will be absorbed at the far end by the termination. However, if there is an impedance variation somewhere, then some of the incident signal will be reflected back to the source. The reflections will have the same shape as the incident signal, but their sign and magnitude depend on the change in impedance level. If there is a step increase in the impedance, then the reflection will have the same sign as the incident signal and if there is a step decrease in impedance, the reflection will have the opposite sign. The reflections are measured at the output/input of the Time-Domain Reflectometer and displayed as a function of time. Alternatively, the display can show the transmission and reflections as a function of cable length because the speed of signal propagation is almost constant for a given transmission medium. TDRs can be used to analyze cable impedances and lengths, connector and splice losses and locations. TDR impedance measurements provide designers the opportunity to perform signal integrity analysis of system interconnects and accurately predict the digital system performance. TDR measurements are widely used in board characterization work. A circuit board designer can determine the characteristic impedances of board traces, compute accurate models for board components, and predict board performance more accurately. There are many other areas of application for time-domain reflectometers. A SEMICONDUCTOR CURVE TRACER is a test equipment used to analyze the characteristics of discrete semiconductor devices such as diodes, transistors, and thyristors. The instrument is based on oscilloscope, but contains also voltage and current sources that can be used to stimulate the device under test. A swept voltage is applied to two terminals of the device under test, and the amount of current that the device permits to flow at each voltage is measured. A graph called V-I (voltage versus current) is displayed on the oscilloscope screen. Configuration includes the maximum voltage applied, the polarity of the voltage applied (including the automatic application of both positive and negative polarities), and the resistance inserted in series with the device. For two terminal devices like diodes, this is sufficient to fully characterize the device. The curve tracer can display all of the interesting parameters such as the diode's forward voltage, reverse leakage current, reverse breakdown voltage,…etc. Three-terminal devices such as transistors and FETs also use a connection to the control terminal of the device being tested such as the Base or Gate terminal. For transistors and other current based devices, the base or other control terminal current is stepped. For field effect transistors (FETs), a stepped voltage is used instead of a stepped current. By sweeping the voltage through the configured range of main terminal voltages, for each voltage step of the control signal, a group of V-I curves is generated automatically. This group of curves makes it very easy to determine the gain of a transistor, or the trigger voltage of a thyristor or TRIAC. Modern semiconductor curve tracers offer many attractive features such as intuitive Windows based user interfaces, I-V, C-V and pulse generation, and pulse I-V, application libraries included for every technology…etc. PHASE ROTATION TESTER / INDICATOR: These are compact and rugged test instruments to identify phase sequence on three-phase systems and open/de-energized phases. They are ideal for installing rotating machinery, motors and for checking generator output. Among the applications are the identification of proper phase sequences, detection of missing wire phases, determination of proper connections for rotating machinery, detection of live circuits. A FREQUENCY COUNTER is a test instrument that is used for measuring frequency. Frequency counters generally use a counter which accumulates the number of events occurring within a specific period of time. If the event to be counted is in electronic form, simple interfacing to the instrument is all that is needed. Signals of higher complexity may need some conditioning to make them suitable for counting. Most frequency counters have some form of amplifier, filtering and shaping circuitry at the input. Digital signal processing, sensitivity control and hysteresis are other techniques to improve performance. Other types of periodic events that are not inherently electronic in nature will need to be converted using transducers. RF frequency counters operate on the same principles as lower frequency counters. They have more range before overflow. For very high microwave frequencies, many designs use a high-speed prescaler to bring the signal frequency down to a point where normal digital circuitry can operate. Microwave frequency counters can measure frequencies up to almost 100 GHz. Above these high frequencies the signal to be measured is combined in a mixer with the signal from a local oscillator, producing a signal at the difference frequency, which is low enough for direct measurement. Popular interfaces on frequency counters are RS232, USB, GPIB and Ethernet similar to other modern instruments. In addition to sending measurement results, a counter can notify the user when user-defined measurement limits are exceeded. For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com CLICK Product Finder-Locator Service RÛPERA BERÊ
- Active Optical Components, Lasers, Photodetectors, LED Dies, Laser
Active Optical Components - Lasers - Photodetectors - LED Dies - Photomicrosensor - Fiber Optic - AGS-TECH Inc. - USA Hilberîn & Civîna Pêkhateyên Optîk ên Çalak The ACTIVE OPTICAL COMPONENTS we manufacture and supply are: • Lasers and photodetectors, PSD (Position Sensitive Detectors), quadcells and other optical sensors and sensor systems with electrical connections. Our active optical components span a large spectrum of wavelength regions. Whether your application is high power lasers for industrial cutting, drilling, welding...etc, or medical lasers for surgery or diagnostics, or telecommunication lasers or detectors suitable for the ITU grid, we are your one-stop source. Below are downloadable brochures for some of our off-the-shelf active optical components and devices. If you cannot find what you are searching for, please contact us and we will have something to offer you. We do also custom manufacture active optical components and assemblies according to your application and requirements. • Among the many achievements of our optical engineers is the concept design, optical and opto-mechanical design of optical scan head for GS 600 LASER DRILLING SYSTEM with dual galvo scanners and self compensating alignment. Since its introduction, the GS600 family has become the system of choice for many leading high volume manufacturers around the World. Using optical design tools such as ZEMAX and CodeV, our optical engineers are ready to design your custom systems. If you only have SOLIDWORKS files for your design, don't worry, send them and we will work out and create the optical design files, optimize & simulate and have you approve the final design. Even a hand sketch, a mockup, a prototype or sample is sufficient in most cases for us to take care of your product development needs. Click on blue highlighted text to download brochures and catalogs of some off-the-shelf-ready active optical products: Active fiber optic products Comprehensive electric & electronic components catalog for off-shelf products Hikrobot Machine Vision Products Hikrobot Smart Machine Vision Products Hikrobot Machine Vision Standard Products Hikvision Logistic Vision Solutions LED dies and chips Photomicrosensors Photosensors Photosensors and Photomicrosensors Sockets and Accessories Private Label Medical Endoscopes and Visualization Systems (We can put your company name and logo on these) Sensors & Analytical Measurement Systems for Optical OEM Applications in Liquid Analysis (We private label these with your brand name and logo if you wish. We can customize sensors to your needs and applications, OEM option available) Dowload brochure for our DESIGN PARTNERSHIP PROGRAM R e ference Code: OICASANLY CLICK Product Finder-Locator Service RÛPERA BERÊ
- Ultrasonic Machining, Ultrasonic Impact Grinding, Custom Manufacturing
Ultrasonic Machining, Ultrasonic Impact Grinding, Rotary Ultrasonic Machining, Non-Conventional Machining, Custom Manufacturing - AGS-TECH Inc. New Mexico, USA Ultrasonic Machining & Rotary Ultrasonic Machining & Ultrasonic Impact Grinding Another popular NON-CONVENTIONAL MACHINING technique we frequently use is ULTRASONIC MACHINING (UM), also widely known as ULTRASONIC IMPACT GRINDING, where material is removed from a workpiece surface by microchipping and erosion with abrasive particles using a vibrating tool oscillating at ultrasonic frequencies, aided by an abrasive slurry that flows freely between the workpiece and the tool. It differs from most other conventional machining operations because very little heat is produced. The tip of the ultrasonic machining tool is called a “sonotrode” which vibrates at amplitudes of 0.05 to 0.125 mm and frequencies around 20 kHz. The vibrations of the tip transmit high velocities to fine abrasive grains between the tool and the surface of the workpiece. The tool never contacts the workpiece and therefore the grinding pressure is rarely more than 2 pounds. This working principle makes this operation perfect for machining extremely hard and brittle materials, such as glass, sapphire, ruby, diamond, and ceramics. The abrasive grains are located within a water slurry with a concentration between 20 to 60% by volume. The slurry also acts as the carrier of the debris away from the cutting / machining region. We use as abrasive grains mostly boron carbide, aluminum oxide and silicon carbide with grain sizes ranging from 100 for roughing processes to 1000 for our finishing processes. The ultrasonic-machining (UM) technique is best suited for hard and brittle materials like ceramics and glass, carbides, precious stones, hardened steels. The surface finish of ultrasonic machining depends upon the hardness of the workpiece/tool and the average diameter of the abrasive grains used. The tool tip is generally a low-carbon steel, nickel and soft steels attached to a transducer through the toolholder. The ultrasonic-machining process utilizes the plastic deformation of metal for the tool and the brittleness of the workpiece. The tool vibrates and pushes down on the abrasive slurry containing grains until the grains impact the brittle workpiece. During this operation, the workpiece is broken down while the tool bends very slightly. Using fine abrasives, we can achieve dimensional tolerances of 0.0125 mm and even better with ultrasonic-machining (UM). Machining time depends upon the frequency at which the tool is vibrating, the grain size and hardness, and the viscosity of the slurry fluid. The less viscous the slurry fluid, the faster it can carry away used abrasive. Grain size must be equal or greater than the hardness of the workpiece. As an example we can machine multiple aligned holes 0.4 mm in diameter on a 1.2 mm wide glass strip with ultrasonic machining. Let us get a little bit into the physics of the ultrasonic machining process. Microchipping in ultrasonic machining is possible thanks to the high stresses produced by particles striking the solid surface. Contact times between particles and surfaces are very short and in the order of 10 to 100 microseconds. The contact time can be expressed as: to = 5r/Co x (Co/v) exp 1/5 Here r is the radius of the spherical particle, Co is the elastic wave velocity in the workpiece (Co = sqroot E/d) and v is the velocity that the particle hits the surface with. The force a particle exerts on the surface is obtained from the rate of change of momentum: F = d(mv)/dt Here m is the grain mass. The average force of the particles (grains) hitting and rebounding from the surface is: Favg = 2mv / to Here to is the contact time. When numbers are plugged into this expression, we see that even though the parts are very small, since the contact area is also very small, the forces and thus the stresses exerted are significantly high to cause microchipping and erosion. ROTARY ULTRASONIC MACHINING (RUM): This method is a variation of ultrasonic machining, where we replace the abrasive slurry with a tool that has metal-bonded diamond abrasives that have been either impregnated or electroplated on the tool surface. The tool is rotated and ultrasonically vibrated. We press the workpiece at constant pressure against the rotating and vibrating tool. The rotary ultrasonic machining process gives us capabilities such as producing deep holes in hard materials at high material removal rates. Since we deploy a number of conventional and non-conventional manufacturing techniques, we can be of help to you whenever you have questions about a particular product and the fastest and most economical way of manufacturing & fabricating it. CLICK Product Finder-Locator Service RÛPERA BERÊ
- PCB, PCBA, Printed Circuit Board Assembly, Surface Mount Assembly, SMA
PCB - PCBA - Printed Circuit Board Assembly - Rigid Flexible Multilayer - Surface Mount Assembly - SMA - AGS-TECH Inc. PCB & PCBA Manufacturing û Meclîsa We offer: PCB: Printed Circuit Board PCBA: Printed Circuit Board Assembly • Printed Circuit Board Assemblies of all types (PCB, rigid, flexible and multilayer) • Substrates or complete PCBA assembly depending on your needs. • Thru-Hole and Surface Mount Assembly (SMA) Please send us your Gerber files, BOM, component specifications. We can either assemble your PCBs and PCBA's using your exact components specified, or we can offer you our matching alternatives. We are experienced shipping PCBs and PCBAs and will make sure to package them in antistatic bags to avoid electrostatic damage. PCBs intended for extreme environments often have a conformal coating, which is applied by dipping or spraying after the components have been soldered. The coat prevents corrosion and leakage currents or shorting due to condensation. Our conformal coats are usually dips of dilute solutions of silicone rubber, polyurethane, acrylic, or epoxy. Some are engineering plastics sputtered onto the PCB in a vacuum chamber. Safety Standard UL 796 covers component safety requirements for printed wiring boards for use as components in devices or appliances. Our tests analyze characteristics such as flammability, maximum operating temperature, electrical tracking, heat deflection, and direct support of live electrical parts. The PCB boards may use organic or inorganic base materials in a single or multilayer, rigid or flexible form. Circuitry construction may include etched, die stamped, precut, flush press, additive, and plated conductor techniques. Printed-component parts may be used. The suitability of the pattern parameters, temperature and maximum solder limits shall be determined in accordance with the applicable end-product construction and requirements. Don't wait, call us for more information, design assistance, prototypes and mass production. If you need, we will take care of all the labeling, packaging, shipping, import & customs, storage and delivery. Below you can download our relevant brochures and catalogs for PCB and PCBA assembly: General process capabilities & tolerances for rigid PCB manufacturing General process capabilities & tolerances for aluminum PCB manufacturing General process capabilities & tolerances for flexible and rigid-flexible PCB manufacturing General PCB Fabrication Processes General process summary of Printed Circuit Board Assembly PCBA manufacturing Overview of Printed Circuit Boards Manufacturing Plant Some more brochures of our products we can use in your PCB and PCBA assembly projects: To download our catalog for off-shelf interconnect components & hardware such as quick-fit terminals, USB plugs & sockets, micro pins & jacks and more, please CLICK HERE Terminal Blocks and Connectors Terminal Blocks General Catalogue Standard heat sinks Extruded heat sinks Easy Click heat sinks a perfect product for PCB assemblies Super Power heat sinks for medium - high power electronic systems Heat sinks with Super Fins LCD modules Receptacles-Power Entry-Connectors Catalogue Dowload brochure for our DESIGN PARTNERSHIP PROGRAM If you are interested in our engineering and research & development capabilities instead of manufacturing operations and capabilities, then we invite you to visit our engineering site http://www.ags-engineering.com CLICK Product Finder-Locator Service RÛPERA BERÊ
- Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff...
Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff, Crowned Involute Ball Spline Manufacturing, Serrations, Gib-Head Key from AGS-TECH Inc. Keys & Splines & Pins Manufacturing Other miscellaneous fasteners we provide are keys, splines, pins, serrations. KEYS: A key is a piece of steel lying partly in a groove in the shaft and extending into another groove in the hub. A key is used to secure gears, pulleys, cranks, handles, and similar machine parts to shafts, so that the motion of the part is transmitted to the shaft, or the motion of the shaft to the part, without slippage. The key may also act in a safety capacity; its size can be calculated so that when overloading takes place, the key will shear or break before the part or shaft breaks or deforms. Our keys are also available with a taper on their top surfaces. For tapered keys, the keyway in the hub is tapered to accommodate the taper on the key. Some major types of keys we offer are: Square key Flat key Gib-Head Key – These keys are the same as flat or square tapered keys but with added head for ease of removal. Pratt and Whitney Key – These are rectangular keys with rounded edges. Two-thirds of these keys sit in the shaft and one-third in the hub. Woodruff Key – These keys are semicircular and fit into semicircular keyseats in the shafts and rectangular keyways in the hub. SPLINES: Splines are ridges or teeth on a drive shaft that mesh with grooves in a mating piece and transfer torque to it, maintaining the angular correspondence between them. Splines are capable of carrying heavier loads than keys, permit lateral movement of a part, parallel to the axis of the shaft, while maintaining positive rotation, and allow the attached part to be indexed or changed to another angular position. Some splines have straight-sided teeth, whereas others have curved-sided teeth. Splines with curved-sided teeth are called involute splines. Involute splines have pressure angles of 30, 37.5 or 45 degrees. Both internal and external spline versions are available. SERRATIONS are shallow involute splines with 45 degree pressure angles and are used for holding parts like plastic knobs. Major types of splines we offer are: Parallel key splines Straight-side splines – Also called parallel-side splines, they are used in many automotive and machine industry applications. Involute splines – These splines are similar in shape to involute gears but have pressure angles of 30, 37.5 or 45 degrees. Crowned splines Serrations Helical splines Ball splines PINS / PIN FASTENERS: Pin fasteners are an inexpensive and effective method of assembly when loading is primarily in shear. Pin fasteners can be separated into two groups: Semipermanent Pinsand Quick-Release Pins. Semipermanent pin fasteners require application of pressure or the aid of tools for installation or removal. Two basic types are Machine Pins and Radial Locking Pins. We offer the following machine pins: Hardened and ground dowel pins – We have standardized nominal diameters between 3 to 22 mm available and can machine custom sized dowel pins. Dowel pins can be used to hold laminated sections together, they can fasten machine parts with high alignment accuracy, lock components on shafts. Taper pins – Standard pins with 1:48 taper on the diameter. Taper pins are suitable for light-duty service of wheels and levers to shafts. Clevis pins - We have standardized nominal diameters between 5 to 25 mm available and can machine custom sized clevis pins. Clevis pins can be used on mating yokes, forks and eye members in knuckle joints. Cotter pins – Standardized nominal diameters of cotter pins range from 1 to 20 mm. Cotter pins are locking devices for other fasteners and are generally used with a castle or slotted nuts on bolts, screws, or studs. Cotter pins enable low-cost and convenient locknut assemblies. Two basic pin forms are offered as Radial Locking Pins, solid pins with grooved surfaces and hollow spring pins which are either slotted or come with spiral-wrapped configuration. We offer the following radial locking pins: Grooved straight pins – Locking is enabled by parallel, longitudinal grooves uniformly spaced around the pin surface. Hollow spring pins – These pins are compressed when driven into holes and pins exert spring pressure against the hole walls along their entire engaged length to produce locking fits Quick-release pins: Available types vary widely in head styles, types of locking and release mechanisms, and range of pin lengths. Quick-release pins have applications such as clevis-shackle pin, draw-bar hitch pin, rigid coupling pin, tubing lock pin, adjustment pin, swivel hinge pin. Our quick release pins can be grouped into one of two basic types: Push-pull pins – These pins are made with either a solid or hollow shank containing a detent assembly in the form of a locking lug, button or ball, backed up by some sort of plug, spring or resilient core. The detent member projects from the pins surface until sufficient force is applied in assembly or removal to overcome the spring action and to release the pins. Positive-locking pins - For some quick-release pins, the locking action is independent of insertion and removal forces. Positive-locking pins are suited for shear-load applications as well as for moderate tension loads. CLICK Product Finder-Locator Service RÛPERA BERÊ
- Industrial Servers, Database Server, File Server, Mail Server, Print
Industrial Servers - Database Server - File Server - Mail Server - Print Server - Web Server - AGS-TECH Inc. - NM - USA Pêşkêşkerên Pîşesazî When referring to client-server architecture, a SERVER is a computer program that runs to serve the requests of other programs, also considered as the ''clients''. In other words the ''server'' performs computational tasks on behalf of its ''clients''. The clients may either run on the same computer or be connected through the network. In popular use however, a server is a physical computer dedicated to running as a host one or more of these services and to serve the needs of users of the other computers on the network. A server could be a DATABASE SERVER, FILE SERVER, MAIL SERVER, PRINT SERVER, WEB SERVER, or else depending on the computing service it offers. We offer the best quality industrial server brands available such as ATOP TECHNOLOGIES, KORENIX and JANZ TEC . Click on blue highlighted text below to download respective catalogs and brochures: - ATOP TECHNOLOGIES compact product brochure - ATOP Technologies Product List 2021) - ICP DAS brand industrial communication and networking products brochure - ICP DAS brand Tiny Device Server and Modbus Gateway brochure - JANZ TEC brand compact product brochure - KORENIX brand compact product brochure To choose a suitable Industrial Grade Server, please go to our industrial computer store by CLICKING HERE. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM DATABASE SERVER : This term is used to refer to the back-end system of a database application using client/server architecture. The back-end database server performs tasks such as data analysis, data storage, data manipulation, data archiving, and other non-user specific tasks. FILE SERVER : In the client/server model, this is a computer responsible for the central storage and management of data files so that other computers on the same network can access them. File servers allow users to share information over a network without physically transferring files by floppy disk or other external storage devices. In sophisticated and professional networks, a file server might be a dedicated network-attached storage (NAS) device that also serves as a remote hard disk drive for other computers. Thus anyone on the network can store files on it like to their own hard drive. MAIL SERVER : A mail server, also called an e-mail server is a computer within your network that works as your virtual post office. It consists of a storage area where e-mail is stored for local users, a set of user defined rules determining how the mail server should react to the destination of a specific message, a database of user accounts that the mail server will recognize and deal with locally, and communications modules which handle the transfer of messages to and from other email servers and clients. Mail servers are generally designed to operate with no manual intervention during normal operation. PRINT SERVER : Sometimes called a printer server, this is a device that connects printers to client computers over a network. Print servers accept print jobs from the computers and send the jobs to the appropriate printers. Print server queues jobs locally because work may arrive more quickly than the printer can actually handle it. WEB SERVER : These are computers that deliver and serve Web pages. All Web servers have IP addresses and generally domain names. When we enter the URL of a website in our browser, this sends a request to the Web server whose domain name is the website entered. The server then fetches the page named index.html and sends it to our browser. Any computer can be turned into a Web server by installing server software and connecting the machine to the Internet. There are many Web server software applications such as packages from Microsoft and Netscape. CLICK Product Finder-Locator Service RÛPERA BERÊ
- Test Equipment for Furniture Testing
Test Equipment for Furniture Testing, Sofa Durability Tester, Chair Base Static Tester, Chair Drop Impact Tester, Mattress Firmness Tester Amûrên Testê ji bo Ceribandina Furniture Specialized Test Equipment for Testing of Furniture are used for testing furniture products such as chairs, table, sofas, mattress....etc., for checking their quality, endurance, functionality, reliability, safety, compliance to domestic and international standards....etc. Our specialized test equipment can be either: - CUSTOM DESIGNED and MANUFACTURED SPECIALIZED TEST EQUIPMENT for FURNITURE TESTING or - OFF-SHELF SPECIALIZED TEST EQUIPMENT for FURNITURE TESTING Custom designed specialized testing equipment is designed and developed by us for our customers specific needs, taking into consideration our customers specific requirements, their markets, their legal responsibilities...etc. We work with you hand in hand to accomplish what you need and want. Our engineers design, prototype and get your approval prior to manufacturing your test machines. On the other hand, our off-shelf specialized test equipment for testing of furniture are already designed and manufactured systems that can be purchased quickly from us and used. If you let us know what you need, we will be happy to guide you and propose you ready systems that can help achieve your goals. Our off-shelf specialized test equipment for testing of furniture can be downloaded from the colored links below: HAIDA Bifma Furnitures Testing Machine HAIDA Chair Arm and Leg Tester HAIDA Chair Base Static Tester HAIDA Chair Caster Durability Tester HAIDA Chair Drop Impact Tester HAIDA Chair and Foam Testing Machine HAIDA Chair Seating and Back Durability HAIDA Chair Strength Tester HAIDA Chair Swivel Tester Catalog Download HAIDA Chair Universal Test Machine HAIDA Color Assessment Cabinet HAIDA Foam Pounding Fatigue Tester HAIDA Furniture Universal Test Machine HAIDA Mattress Cornell Tester HAIDA Mattress Firmness Tester HAIDA Mattress Rollator Durability Tester HAIDA Mattress Rollator Durability Tester-2 HAIDA Sofa Durability Tester HD-F769 HAIDA Sofa Durability Tester HD-F761 HAIDA Sofa Iron Frame Fatigue Tester HAIDA Universal Test Field for Tables Chairs Ji bo alavên din ên bi vî rengî, ji kerema xwe biçin malpera alavên me: http://www.sourceindustrialsupply.com CLICK Product Finder-Locator Service RÛPERA BERÊ
- Composite Stereo Microscopes, Metallurgical Microscope, Fiberscope
Composite Stereo Microscopes - Metallurgical Microscope - Fiberscope - Borescope - SADT -AGS-TECH Inc - New Mexico - USA Mîkroskop, Fiberscope, Borescope, Makîneyên Pîvana Vîzyonê, Projektorên Profîl We supply MICROSCOPES, FIBERSCOPES, BORESCOPES, VISION MEASURING MACHINES, PROFILE PROJECTORS from manufacturers like SADT, SINOAGE, SINOWON for industrial applications. There are a large number of microscopes based on the physical principle used to produce an image and based on their area of application. The type of instruments we supply are OPTICAL MICROSCOPES (COMPOUND / STEREO TYPES), and METALLURGICAL MICROSCOPES. You can purchase brand new as well as refurbished or used equipment from us. Browse through our catalogs below and let us know the brand and model number and we will provide you our offers: HAIDA Color Assessment Cabinet SADT-SINOAGE Brand Metrology and Test Equipment Catalog In this catalog you will find some high quality metallurgical microscopes and inverted microscopes. SINOWON Instant Vision Measuring System SINOWON Profile Projector SINOWON Toolmakers Microscope SINOWON Vision Measuring Machine SINOWON Video Microscope We offer both FLEXIBLE and RIGID FIBERSCOPE and BORESCOPE models and they are primarily used for NONDESTRUCTIVE TESTING in confined spaces, like crevices in some concrete structures and aircraft engines. Both of these optical instruments are used for visual inspection. There are however differences between fiberscopes and borescopes: One of them is the flexibility aspect. Fiberscopes are made of flexible optic fibers and have a viewing lens attached to their head. The operator can turn the lens after insertion of the fiberscope into a crevice. This increases the operator’s view. To the contrary, borescopes are generally rigid and allow the user to view only straight ahead or at right angles. Another difference is the light source. A fiberscope does transmit light down its optical fibers to illuminate the observation area. On the other hand, a borescope has mirrors and lenses so light can be bounced from between mirrors to illuminate the observation area. Lastly, the clarity is different. Whereas fiberscopes are limited to a range of 6 to 8 inches, borescopes can provide a wider and clearer view as compared to fiberscopes. OPTICAL MICROSCOPES : These optical instruments use visible light (or UV light in the case of fluorescence microscopy) to produce an image. Optical lenses are used to refract the light. The first microscopes that were invented were optical. Optical microscopes can be further subdivided into several categories. We focus our attention to two of them: 1.) COMPOUND MICROSCOPE : These microscopes are composed of two lens systems, an objective and an ocular (eye piece). The maximum useful magnification is about 1000x. 2.) STEREO MICROSCOPE (also known as DISSECTING MICROSCOPE): These microscopes magnify to about maximum 100x and supply a 3D view of the specimen. They are useful for observing opaque objects. METALLURGICAL MICROSCOPES : Our downloadable SADT catalog with the link above does contain metallurgical and inverted metallographic microscopes. So please see our catalog for product details. In order to acquire a basic understanding about these types of microscopes, please go to our page COATING SURFACE TEST INSTRUMENTS. FIBERSCOPES : Fiberscopes incorporate fiber optic bundles, consisting of numerous fiber optic cables. Fiber optic cables are made of optically pure glass and are as thin as a human’s hair. The main components to a fiber optic cable are: Core, which is the center made of high purity glass, cladding which is he outer material surrounding the core that prevents light from leaking and finally buffer which is the protective plastic coating. Generally there are two different fiber optic bundles in a fiberscope: The first one is the illumination bundle which is designed to carry light from the source to the eyepiece and the second one is the imaging bundle designed to carry an image from the lens to the eyepiece. A typical fiberscope is made up of the following components: -Eyepiece: This is the part from where we observe the image. It magnifies the image carried by the imaging bundle for easy viewing. -Imaging Bundle: A strand of flexible glass fibers transmitting the images to the eyepiece. -Distal Lens: A combination of multiple micro lenses that take images and focus them into the small imaging bundle. -Illumination System: A Fiber optic light guide that sends light from the source to the target area (eyepiece) -Articulation System: The system providing the user the ability to control the movement of the bending section of the fiberscope that is directly attached to the distal lens. -Fiberscope Body: The control section designed to help one hand operation. -Insertion Tube: This flexible and durable tube protects the fiber optic bundle and articulation cables. -Bending Section – The most flexible part of the fiberscope connecting the insertion tube to the distal viewing section. -Distal Section: ending location for both the illumination and imaging fiber bundle. BORESCOPES / BOROSCOPES : A borescope is an optical device consisting of a rigid or flexible tube with an eyepiece on one end, and an objective lens on the other end linked together by a light transmitting optical system in between. Optical fibers surrounding the system are generally used for illuminating the object to be viewed. An internal image of the illuminated object is formed by the objective lens, magnified by the eyepiece and presented to the viewer's eye. Many modern borescopes can be fitted with imaging and video devices. Borescopes are used similar to fiberscopes for visual inspection where the area to be inspected is inaccessible by other means. Borescopes are considered nondestructive test instruments for viewing and examining defects and imperfections. The areas of application is only limited by your imagination. The term FLEXIBLE BORESCOPE is sometimes used interchangeably with the term fiberscope. One disadvantage for flexible borescopes originates from pixelation and pixel crosstalk due to the fiber image guide. Image quality varies widely among different models of flexible borescopes depending on the number of fibers and construction used in the fiber image guide. High end borescopes offer a visual grid on image captures that aids in evaluating the size of the area under inspection. For flexible borescopes, articulation mechanism components, range of articulation, field of view and angles of view of the objective lens are also important. Fiber content in the flexible relay is also critical to provide the highest possible resolution. Minimal quantity is 10,000 pixels while the best images are obtained with higher numbers of fibers in the 15,000 to 22,000 pixels range for the larger diameter borescopes. The ability to control the light at the end of the insertion tube allows the user to make adjustments that can significantly improve the clarity of images taken. On the other hand, RIGID BORESCOPES generally provide a superior image and lower cost compared to a flexible borescope. The shortcoming of rigid borescopes is the limitation that access to what is to be viewed must be in a straight line. Therefore, rigid borescopes have a limited area of application. For similar-quality instruments, the largest rigid borescope that will fit the hole gives the best image. A VIDEO BORESCOPE is similar to the flexible borescope but uses a miniature video camera at the end of the flexible tube. The end of the insertion tube includes a light which makes it possible to capture video or still images deep within the area of investigation. The ability of video borescopes to capture video and still images for later inspection is very useful. Viewing position can be changed via a joystick control and displayed on the screen mounted on its handle. Because the complex optical waveguide is replaced with an inexpensive electrical cable, video borescopes can be much less costly and potentially offer better resolution. Some borescopes offer USB cable connection. For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com CLICK Product Finder-Locator Service RÛPERA BERÊ
- Chemical Physical Environmental Analyzers, NDT, Nondestructive Testing
Chemical Physical Environmental Analyzers, NDT, Nondestructive Testing, Analytical Balance, Chromatograph, Mass Spectrometer, Gas Analyzer, Moisture Analyzer Kîmyewî, Fîzîkî, Analyzerên Jîngehê The industrial CHEMICAL ANALYZERS we provide are: CHROMATOGRAPHS, MASS SPECTROMETERS, RESIDUAL GAS ANALYZERS, GAS DETECTORS, MOISTURE ANALYZER, DIGITAL GRAIN AND WOOD MOISTURE METERS, ANALYTICAL BALANCE The industrial PHYSICAL ANALYSIS INSTRUMENTS we offer are: SPECTROPHOTOMETERS, POLARIMETER, REFRACTOMETER, LUX METER, GLOSS METERS, COLOR READERS, COLOR DIFFERENCE METER , DIGITAL LASER DISTANCE METERS, LASER RANGEFINDER, ULTRASONIC CABLE HEIGHT METER, SOUND LEVEL METER, ULTRASONIC DISTANCE METER , DIGITAL ULTRASONIC FLAW DETECTOR , HARDNESS TESTER , METALLURGICAL MICROSCOPES , SURFACE ROUGHNESS TESTER , ULTRASONIC THICKNESS GAUGE , VIBRATION METER , TACHOMETER . and others...... For the highlighted products, please visit our related pages by clicking on the corresponding colored text above. The ENVIRONMENTAL ANALYZERS we provide are: TEMPERATURE & HUMIDITY CYCLING CHAMBERS, ENVIRONMENTAL TESTING CHAMBERS, LIQUID ANALYSIS & TEST SYSTEMS. Click on Colored Text to Download Catalogs below. Choose the brand and model number of your interest and let us know whether you need brand new, or refurbished / used equipment: AMETEK-LLOYD Instruments Materials Testing (Versatile Materials Testing Equipment, Universal Test Machines, Tensile Strength, Compressibility, Hardness, Elasticity, Peeling, Adhesion...etc.) ELCOMETER Inspection Equipment Catalog ( Physical Test Equipment , Gloss & Reflectance , Colour Measurement , Fineness Of Grind/Dispersion , Density & Specific Gravity , Viscosity & Flow Measurement , Film Application & Test Charts , Drying Time & Permeability , Washability & Abrasion , Hardness & Scratch Resistance , Elasticity, Bend & Impact Testers , Flash Point, Concrete Inspection Equipment ) FLUKE Test Tools Catalog (includes Indoor Air Quality Tools, Air Meter, Airflow Meter, Temperature-Humidity Meter, Particle Counter, Carbon Monoxide Meters) HAIDA Anti-Yellowing Aging Test Chamber HAIDA Color Assessment Cabinet HAIDA IPX1&X2 Water Drip Test Chamber HAIDA Rapid-Rate Thermal Cycle Chamber HAIDA Salt Corrosion Spray Test Chamber HAIDA Salt Spray Test Chamber HAIDA Sand Dust Proofing Test Chamber HAIDA Temperature Humidity Test Chamber HAIDA Thermal Shock Test Chamber HAIDA Ultraviolet Weathering Test Chamber HAIDA Walk-In Environmental Test Chamber HAIDA Xenon Aging Test Chamber High HAIDA Xenon Aging Test Chamber Standard Helium Leak Tester (We private label these with your brand name and logo if you wish) METTLER TOLEDO Weighing Solutions for Retail Stores SADT-SINOAGE brand metrology and test equipment, please CLICK HERE . You will find some models of the above listed equipment here. Sensors & Analytical Measurement Systems for Liquid Analysis (Products in this brochure are used for environmental tests and and tests carried out in process industries. Example products are conductivity sensors, dissolved oxygen sensors, chlorine sensors, turbidity/suspended solids sensors, optical sensors, transmitters....etc. We private label these with your brand name and logo if you wish) Sensors & Analytical Measurement Systems for Optical OEM Applications in Liquid Analysis (We private label these with your brand name and logo if you wish) Sensors & Analytical Measurement Systems for pH Testing (We private label these with your brand name and logo if you wish) Some fundamental information on these test systems: CHROMATOGRAPHY is a physical method of separation that distribute s components to separate between two phases, one stationary (stationary phase), the other (the mobile phase) moving in a definite direction. In other words, it refers to laboratory techniques for the separation of mixtures. The mixture is dissolved in a fluid called the mobile phase, which carries it through a structure holding another material called the stationary phase. The various constituents of the mixture travel at different speeds, which causes them to separate. The separation is based on differential partitioning between the mobile and stationary phases. Small differences in partition coefficient of a compound results in differential retention on the stationary phase and thus changing the separation. Chromatography can be used to separate the components of a mixture for more advanced use such as purification) or for measuring the relative proportions of analytes (which is the substance to be separated during chromatography) in a mixture. Several chromatographic methods exist, such as paper chromatography, gas chromatography and high performance liquid chromatography. ANALYTICAL CHROMATOGRAPHY is used to determine the existence and the concentration of analyte(s) in a sample. In a chromatogram different peaks or patterns correspond to different components of the separated mixture. In an optimal system each signal is proportional to the concentration of the corresponding analyte that was separated. An equipment called CHROMATOGRAPH enables a sophisticated separation. There are specialized types according to the physical state of the mobile phase such as GAS CHROMATOGRAPHS and LIQUID CHROMATOGRAPHS. Gas chromatography (GC), also sometimes called gas-liquid chromatography (GLC), is a separation technique in which the mobile phase is a gas. High temperatures used in Gas Chromatographs make it unsuitable for high molecular weight biopolymers or proteins encountered in biochemistry because heat denatures them. The technique is however well suited for use in the petrochemical, environmental monitoring, chemical research and industrial chemical fields. On the other hand, Liquid Chromatography (LC) is a separation technique in which the mobile phase is a liquid. In order to measure the characteristics of individual molecules, a MASS SPECTROMETER converts them to ions so that they can be accelerated, and moved about by external electric and magnetic fields. Mass spectrometers are used in Chromatographs explained above, as well as in other analysis instruments. The associated components of a typical mass spectrometer are: Ion Source: A small sample is ionized, usually to cations by loss of an electron. Mass Analyzer: The ions are sorted and separated according to their mass and charge. Detector: The separated ions are measured and results displayed on a chart. Ions are very reactive and short-lived, therefore their formation and manipulation must be conducted in a vacuum. The pressure under which ions may be handled is roughly 10-5 to 10-8 torr. The three tasks listed above may be accomplished in different ways. In one common procedure, ionization is effected by a high energy beam of electrons, and ion separation is achieved by accelerating and focusing the ions in a beam, which is then bent by an external magnetic field. The ions are then detected electronically and the resulting information is stored and analyzed in a computer. The heart of the spectrometer is the ion source. Here molecules of the sample are bombarded by electrons emanating from a heated filament. This is called an electron source. Gases and volatile liquid samples are allowed to leak into the ion source from a reservoir and non-volatile solids and liquids may be introduced directly. Cations formed by the electron bombardment are pushed away by a charged repeller plate (anions are attracted to it), and accelerated toward other electrodes, having slits through which the ions pass as a beam. Some of these ions fragment into smaller cations and neutral fragments. A perpendicular magnetic field deflects the ion beam in an arc whose radius is inversely proportional to the mass of each ion. Lighter ions are deflected more than heavier ions. By varying the strength of the magnetic field, ions of different mass can be focused progressively on a detector fixed at the end of a curved tube under a high vacuum. A mass spectrum is displayed as a vertical bar graph, each bar representing an ion having a specific mass-to-charge ratio (m/z) and the length of the bar indicates the relative abundance of the ion. The most intense ion is assigned an abundance of 100, and it is referred to as the base peak. Most of the ions formed in a mass spectrometer have a single charge, so the m/z value is equivalent to mass itself. Modern mass spectrometers have very high resolutions and can easily distinguish ions differing by only a single atomic mass unit (amu). A RESIDUAL GAS ANALYZER (RGA) is a small and rugged mass spectrometer. We have explained mass spectrometers above. RGAs are designed for process control and contamination monitoring in vacuum systems such as research chambers, surface science setups, accelerators, scanning microscopes. Utilizing quadrupole technology, there are two implementations, utilizing either an open ion source (OIS) or a closed ion source (CIS). RGAs are used in most cases to monitor the quality of the vacuum and easily detect minute traces of impurities possessing sub-ppm detectability in the absence of background interferences. These impurities can be measured down to (10)Exp -14 Torr levels, Residual Gas Analyzers are also used as sensitive in-situ, helium leak detectors. Vacuum systems require checking of the integrity of the vacuum seals and the quality of the vacuum for air leaks and contaminants at low levels before a process is initiated. Modern residual gas analyzers come complete with a quadrupole probe, electronics control unit , and a real-time Windows software package that is used for data acquisition and analysis, and probe control. Some software supports multiple head operation when more than one RGA is needed. Simple design with a small number of parts will minimize outgassing and reduce the chances of introducing impurities into your vacuum system. Probe designs using self-aligning parts will ensure easy reassembled after cleaning. LED indicators on modern devices provide instant feedback on the status of the electron multiplier, filament, electronics system and the probe. Long-life, easily changeable filaments are used for electron emission. For increased sensitivity and faster scan rates, an optional electron multiplier is sometimes offered that detects partial pressures down to 5 × (10)Exp -14 Torr. Another attractive feature of residual gas analyzers is the built-in degassing feature. Using electron impact desorption, the ion source is thoroughly cleaned, greatly reducing the ionizer's contribution to background noise. With a large dynamic range the user can make measurements of small and large gas concentrations simultaneously. A MOISTURE ANALYZER determines the remaining dry mass after a drying process with infrared energy of the original matter which is previously weighed. Humidity is calculated in relation to the weight of the wet matter. During the drying process, the decrease of moisture in the material is shown on the display. The moisture analyzer determines moisture and the amount of dry mass as well as the consistency of volatile and fixed substances with high accuracy. The weighing system of the moisture analyzer possesses all the properties of modern balances. These metrology tools are used in the industrial sector to analyze pastes, wood, adhesive materials, dust,…etc. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be controlled for plastics, pharmaceuticals and heat treatment processes. Trace moisture in gases and liquids need to be measured and controlled as well. Examples include dry air, hydrocarbon processing, pure semiconductor gases, bulk pure gases, natural gas in pipelines….etc. The loss on drying type analyzers incorporate an electronic balance with a sample tray and surrounding heating element. If the volatile content of the solid is primarily water, the LOD technique gives a good measure of moisture content. An accurate method for determining the amount of water is the Karl Fischer titration, developed by the German chemist. This method detects only water, contrary to loss on drying, which detects any volatile substances. Yet for natural gas there are specialized methods for the measurement of moisture, because natural gas poses a unique situation by having very high levels of solid and liquid contaminants as well as corrosives in varying concentrations. MOISTURE METERS are test equipment for measuring the percentage of water in a substance or material. Using this information, workers in various industries determine if the material is ready for use, too wet or too dry. For example, wood and paper products are very sensitive to their moisture content. Physical properties including dimensions and weight are strongly affected by moisture content. If you are purchasing large quantities of wood by weight, it will be a wise thing to measure the moisture content to make sure it is not intentionally watered to increase the price. Generally two basic types of moisture meters are available. One type measures the electrical resistance of the material, which becomes increasingly lower as the moisture content of it rises. With the electrical resistance type of moisture meter, two electrodes are driven into the material and the electrical resistance is translated into moisture content on the device’s electronic output. A second type of moisture meter relies on the dielectric properties of the material, and requires only surface contact with it. The ANALYTICAL BALANCE is a basic tool in quantitative analysis, used for the accurate weighing of samples and precipitates. A typical balance should be able to determine differences in mass of 0.1 milligram. In microanalyses the balance must be about 1,000 times more sensitive. For special work, balances of even higher sensitivity are available. The measuring pan of an analytical balance is inside a transparent enclosure with doors so that dust does not collect and air currents in the room do not affect the balance's operation. There is a smooth turbulence-free airflow and ventilation that prevents balance fluctuation and the measure of mass down to 1 microgram without fluctuations or loss of product. Maintaining consistent response throughout the useful capacity is achieved by maintaining a constant load on the balance beam, thus the fulcrum, by subtracting mass on the same side of the beam to which the sample is added. Electronic analytical balances measure the force needed to counter the mass being measured rather than using actual masses. Therefore they must have calibration adjustments made to compensate for gravitational differences. Analytical balances use an electromagnet to generate a force to counter the sample being measured and outputs the result by measuring the force needed to achieve balance. SPECTROPHOTOMETRY is the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength, and SPECTROPHOTOMETER is the test equipment used for this purpose. The spectral bandwidth (the range of colors it can transmit through the test sample), the percentage of sample-transmission, the logarithmic range of sample-absorption and percentage of reflectance measurement are critical for spectrophotometers. These test instruments are widely used in optical component testing where optical filters, beam splitters, reflectors, mirrors…etc need to be evaluated for their performance. There are many other applications of spectrophotometers including the measurement of transmission and reflection properties of pharmaceutical and medical solutions, chemicals, dyes, colors……etc. These tests ensure consistency from batch to batch in production. A spectrophotometer is able to determine, depending on the control or calibration, what substances are present in a target and their quantities through calculations using observed wavelengths. The range of wavelengths covered is generally between 200 nm - 2500 nm using different controls and calibrations. Within these ranges of light, calibrations are needed on the machine using specific standards for the wavelengths of interest. There are two major types of spectrophotometers, namely single beam and double beam. Double beam spectrophotometers compare the light intensity between two light paths, one path containing a reference sample and the other path containing the test sample. A single-beam spectrophotometer on the other hand measures the relative light intensity of the beam before and after a test sample is inserted. Although comparing measurements from double-beam instruments are easier and more stable, single-beam instruments can have a larger dynamic range and are optically simpler and more compact. Spectrophotometers can be installed also into other instruments and systems which can help users to perform in-situ measurements during production…etc. The typical sequence of events in a modern spectrophotometer can be summarized as: First the light source is imaged upon the sample, a fraction of the light is transmitted or reflected from the sample. Then the light from the sample is imaged upon the entrance slit of the monochromator, which separates the wavelengths of light and focuses each of them onto the photodetector sequentially. The most common spectrophotometers are UV & VISIBLE SPECTROPHOTOMETERS which operate in the ultraviolet and 400–700 nm wavelength range. Some of them cover the near-infrared region too. On the other hand, IR SPECTROPHOTOMETERS are more complicated and expensive because of the technical requirements of measurement in the infrared region. Infrared photosensors are more valuable and Infrared measurement is also challenging because almost everything emits IR light as thermal radiation, especially at wavelengths beyond about 5 m. Many materials used in other types of spectrophotometers such as glass and plastic absorb infrared light, making them unfit as the optical medium. Ideal optical materials are salts such as potassium bromide, which do not absorb strongly. A POLARIMETER measures the angle of rotation caused by passing polarized light through an optically active material. Some chemical materials are optically active, and polarized (unidirectional) light will rotate either to the left (counter-clockwise) or right (clockwise) when passed through them. The amount by which the light is rotated is called the angle of rotation. One popular application, concentration and purity measurements are made to determine product or ingredient quality in the food, beverage and pharmaceutical industries. Some samples that display specific rotations that can be calculated for purity with a polarimeter include the Steroids, Antibiotics, Narcotics, Vitamins, Amino Acids, Polymers, Starches, Sugars. Many chemicals exhibit a unique specific rotation which can be used to distinguish them. A Polarimeter can identify unknown specimens based on this if other variables like concentration and length of sample cell are controlled or at least known. On the other hand, if the specific rotation of a sample is already known, then the concentration and/or purity of a solution containing it can be calculated. Automatic polarimeters calculate these once some input on variables are entered by the user. A REFRACTOMETER is a piece of optical test equipment for the measurement of index of refraction. These instruments measure the extent to which light is bent, i.e. refracted when it moves from air into the sample and are typically used to determine the refractive index of samples. There are five types of refractometers: traditional handheld refractometers, digital handheld refractometers, laboratory or Abbe refractometers, inline process refractometers and finally Rayleigh Refractometers for measuring the refractive indices of gases. Refractometers are widely used in various disciplines such as mineralogy, medicine, veterinary, automotive industry…..etc., to examine products as diverse as gemstones, blood samples, auto coolants, industrial oils. The refractive index is an optical parameter to analyze liquid samples. It serves to identify or confirm the identity of a sample by comparing its refractive index to known values, helps assess the purity of a sample by comparing its refractive index to the value for the pure substance, helps determine the concentration of a solute in a solution by comparing the solution's refractive index to a standard curve. Let us go briefly over the types of refractometers: TRADITIONAL REFRACTOMETERS take advantage of the critical angle principle by which a shadow line is projected onto a small glass thru prisms and lenses. The specimen is placed between a small cover plate and a measuring prism. The point at which the shadow line crosses the scale indicates the reading. There is automatic temperature compensation, because the refractive index varies based on temperature. DIGITAL HANDHELD REFRACTOMETERS are compact, lightweight, water and high temperature resistant testing devices. Measurement times are very short and in the range of two to three seconds only. LABORATORY REFRACTOMETERS are ideal for users planning to measure multiple parameters and get the outputs in various formats, take printouts. Laboratory refractometers offer a wider range and higher accuracy than handheld refractometers. They can be connected to computers and controlled externally. INLINE PROCESS REFRACTOMETERS can be configured to constantly collect specified statistics of the material remotely. The microprocessor control provides computer power that makes these devices very versatile, time-saving and economical. Finally, the RAYLEIGH REFRACTOMETER is used for measuring the refractive indices of gases. Quality of light is very important in the workplace, factory floor, hospitals, clinics, schools, public buildings and many other places. LUX METERS are used to measure luminuous intensity (brightness). Special optic filters match the spectral sensitivity of the human eye. Luminous intensity is measured and reported in foot-candle or lux (lx). One lux is equal to one lumen per square meter and one foot-candle is equal to one lumen per square foot. Modern lux meters are equipped with internal memory or a data logger to record the measurements, cosine correction of the angle of incident light and software to analyze readings. There are lux meters for measuring UVA radiation. High end version lux meters offer Class A status to meet CIE, graphic displays, statistical analysis functions, large measurement range up to 300 klx, manual or automatic range selection, USB and other outputs. A LASER RANGEFINDER is a test instrument which uses a laser beam to determine the distance to an object. Most laser rangefinders operation is based on the time of flight principle. A laser pulse is sent in a narrow beam towards the object and the time taken by the pulse to be reflected off the target and returned to the sender is measured. This equipment is not suitable however for high precision sub-millimeter measurements. Some laser rangefinders use the Doppler effect technique to determine whether the object is moving towards or away from the rangefinder as well as the object’s speed. The precision of a laser rangefinder is determined by the rise or fall time of the laser pulse and the speed of the receiver. Rangefinders that use very sharp laser pulses and very fast detectors are capable to measure the distance of an object to within a few millimeters. Laser beams will eventually spread over long distances due to the divergence of the laser beam. Also distortions caused by air bubbles in the air make it difficult to get an accurate reading of the distance of an object over long distances of more than 1 km in open and unobscured terrain and over even shorter distances in humid and foggy places. High end military rangefinders operate at ranges up to 25 km and are combined with binoculars or monoculars and can be connected to computers wirelessly. Laser rangefinders are used in 3-D object recognition and modelling, and a wide variety of computer vision-related fields such as time-of-flight 3D scanners offering high-precision scanning abilities. The range data retrieved from multiple angles of a single object can be used to produce complete 3-D models with as little error as possible. Laser rangefinders used in computer vision applications offer depth resolutions of tenths of millimeters or less. Many other application areas for laser rangefinders exist, such as sports, construction, industry, warehouse management. Modern laser measurement tools include functions such as capability to make simple calculations, such as the area and volume of a room, switching between imperial and metric units. An ULTRASONIC DISTANCE METER works on a similar principle as a laser distance meter, but instead of light it uses sound with a pitch too high for the human ear to hear. The speed of sound is only about 1/3 of a km per second, so the time measurement is easier. Ultrasound has many of the same advantages of a Laser Distance Meter, namely a single person and one-handed operation. There is no need to access the target personally. However ultrasound distance meters are intrinsically less accurate, because sound is far more difficult to focus than laser light. Accuracy is typically several centimeters or even worse, while it is a few millimeters for laser distance meters. Ultrasound needs a large, smooth, flat surface as the target. This is a severe limitation. You can’t measure to a narrow pipe or similar smaller targets. The ultrasound signal spreads out in a cone from the meter and any objects in the way can interfere with the measurement. Even with laser aiming, one cannot be sure that the surface from which the sound reflection is detected is the same as that where the laser dot is showing. This can lead to errors. Range is limited to tens of meters, whereas laser distance meters can measure hundreds of meters. Despite all these limitations, ultrasonic distance meters cost much less. Handheld ULTRASONIC CABLE HEIGHT METER is a test instrument for measuring cable sag, cable height and overhead clearance to ground. It is the safest method for cable height measurement because it eliminates cable contact and the use of heavy fiberglass poles. Similar to other ultrasonic distance meters, the cable height meter is a one-man simple operation device that sends ultrasound waves to target, measures time to echo, calculates distance based on speed of sound and adjusts itself for air temperature. A SOUND LEVEL METER is a testing instrument that measures sound pressure level. Sound level meters are useful in noise pollution studies for the quantification of different kinds of noise. The measurement of noise pollution is important in construction, aerospace, and many other industries. The American National Standards Institute (ANSI) specifies sound level meters as three different types, namely 0, 1 and 2. The relevant ANSI standards set performance and accuracy tolerances according to three levels of precision: Type 0 is used in laboratories, Type 1 is used for precision measurements in the field, and Type 2 is used for general-purpose measurements. For compliance purposes, readings with an ANSI Type 2 sound level meter and dosimeter are considered to have an accuracy of ±2 dBA, whereas a Type 1 instrument has an accuracy of ±1 dBA. A Type 2 meter is the minimum requirement by OSHA for noise measurements, and is usually sufficient for general purpose noise surveys. The more accurate Type 1 meter is intended for the design of cost-effective noise controls. International industry standards related to frequency weighting, peak sound pressure levels….etc are beyond the scope here due to the details associated with them . Before purchasing a particular sound level meter, we advise that you make sure to know what standards compliance your workplace requires and make the right decision in purchasing a particular model of test instrument. ENVIRONMENTAL ANALYZERS like TEMPERATURE & HUMIDITY CYCLING CHAMBERS, ENVIRONMENTAL TESTING CHAMBERS come in a variety of sizes, configurations and functions depending on the area of application, the specific industrial standards compliance needed and the end users needs. They can be configured and manufactured according to custom requirements. There is a broad range of test specifications such as MIL-STD, SAE, ASTM to help determine the most appropriate temperature humidity profile for your product. Temperature / humidity testing is generally carried out for : Accelerated Aging: Estimates the life of a product when actual lifespan is unknown under normal use. Accelerated aging exposes the product to high levels of controlled temperature, humidity, and pressure within a relatively shorter timeframe than the expected lifespan of the product. Instead of waiting long times and years to see product lifespan, one can determine it using these tests within a much shorter and reasonable time using these chambers. Accelerated Weathering: Simulates exposure from moisture, dew, heat, UV….etc. Weathering and UV exposure causes damage to coatings, plastics, inks, organic materials, devices…etc. Fading, yellowing, cracking, peeling, brittleness, loss of tensile strength, and delamination occur under prolonged UV exposure. Accelerated weathering tests are designed to determine if products will stand the test of time. Heat Soak/Exposure Thermal Shock: Aimed to determine the ability of materials, parts and components to withstand sudden changes in temperature. Thermal shock chambers rapidly cycle products between hot and cold temperature zones to see the effect of multiple thermal expansions and contractions as would be the case in nature or industrial environments throughout the many seasons and years. Pre & Post Conditioning: For conditioning of materials, containers, packages, devices…etc For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com CLICK Product Finder-Locator Service RÛPERA BERÊ


















