top of page

Search Results

164 results found with an empty search

  • Electron Beam Machining, EBM, E-Beam Machining & Cutting & Boring

    Electron Beam Machining, EBM, E-Beam Machining & Cutting & Boring, Custom Manufacturing of Parts - AGS-TECH Inc. - NM - USA EBM Machining & Electron Beam Machining In ELECTRON-BEAM MACHINING (EBM) we have high-velocity electrons concentrated into a narrow beam which are directed toward the work piece, creating heat and vaporizing the material. Thus EBM is a kind of HIGH-ENERGY-BEAM MACHINING technique. Electron-Beam Machining (EBM) can be used for very accurate cutting or boring of a variety of metals. Surface finish is better and kerf width is narrower in comparison to other thermal-cutting processes. The electron beams in EBM-Machining equipment are generated in an electron beam gun. The applications of Electron-Beam Machining are similar to those of Laser-Beam Machining, except that EBM requires a good vacuum. Thus these two processes are classified as electro-optical-thermal processes. The workpiece to be machined with EBM process is located under the electron beam and is kept under vacuum. The electron beam guns in our EBM machines are also provided with illumination systems and telescopes for alignment of the beam with the workpiece. Workpiece is mounted on a CNC table so that holes of any shape can be machined using the CNC control and beam deflection functionality of the gun. To achieve the fast evaporation of the material, the planar density of the power in the beam must be as high as possible. Values up to 10exp7 W/mm2 can be achieved at the spot of impact. The electrons transfer their kinetic energy into heat in a very small area, and the material impacted by the beam is evaporated in a very short time. The molten material at the top of the front, is expelled from the cutting zone by the high vapor pressure at the lower parts. EBM equipment is built similarly to electron beam welding machines. Electron-beam machines usually utilize voltages in the range of 50 to 200 kV to accelerate electrons to about 50 to 80% of the speed of light (200,000 km/s). Magnetic lenses whose function is based on Lorentz forces are used to focus the electron beam to the surface of the workpiece. With the help of a computer, the electromagnetic deflection system positions the beam as needed so holes of any shape can be drilled. In other words, the magnetic lenses in Electron-Beam-Machining equipment shape the beam and reduce the divergence. Apertures on the other hand allow only the convergent electrons to pass and capture the divergent low energy electrons from the fringes. The aperture and the magnetic lenses in EBM-Machines thus improve the quality of the electron beam. The gun in EBM is used in pulsed mode. Holes can be drilled in thin sheets using a single pulse. However for thicker plates, multiple pulses would be needed. Switching pulse durations of as low as 50 microseconds to as long as 15 miliseconds are generally used. To minimize electron collisions with air molecules resulting in scattering and keep contamination to a minimum, vacuum is used in EBM. Vacuum is difficult and expensive to produce. Especially obtaining good vacuum within large volumes and chambers is very demanding. Therefore EBM is best suited for small parts that fit into reasonably sized compact vacuum chambers. The level of vacuum within the EBM’s gun is in the order of 10EXP(-4) to 10EXP(-6) Torr. The interaction of the electron beam with the work piece produces X-rays which pose health hazard, and therefore well trained personnel should operate EBM equipment. Generally speaking, EBM-Machining is used for cutting holes as small as 0.001 inch (0.025 millimetre) in diameter and slots as narrow as 0.001 inch in materials up to 0.250 inch (6.25 millimetres) thick. Characteristic length is the diameter over which the beam is active. Electron beam in EBM may have a characteristic length of tens of microns to mm depending on degree of focusing of the beam. Generally, the high-energy focused electron beam is made to impinge on the workpiece with a spot size of 10 – 100 microns. EBM can provide holes of diameters in the range of 100 microns to 2 mm with a depth up to 15 mm, i.e., with a depth/diameter ratio of around 10. In case of defocused electron beams, power densities would drop as low as 1 Watt/mm2. However in case of focused beams the power densities could be increased to tens of kW/mm2. As a comparison, laser beams can be focused over a spot size of 10 – 100 microns with a power density as high as 1 MW/mm2. Electrical discharge typically provides the highest power densities with smaller spot sizes. Beam current is directly related to the number of electrons available in the beam. Beam current in Electron-Beam-Machining can be as low as 200 microamperes to 1 ampere. Increasing the EBM’s beam current and/or pulse duration directly increases the energy per pulse. We use high-energy pulses in excess of 100 J/pulse to machine larger holes on thicker plates. Under normal conditions, EBM-machining offers us the advantage of burr-free products. The process parameters directly affecting the machining characteristics in Electron-Beam-Machining are: • Acceleration voltage • Beam current • Pulse duration • Energy per pulse • Power per pulse • Lens current • Spot size • Power density Some fancy structures can also be obtained using Electron-Beam-Machining. Holes can be tapered along the depth or barrel shaped. By focusing the beam below the surface, reverse tapers can be obtained. A wide range of materials like steel, stainless steel, titanium and nickel super-alloys, aluminum, plastics, ceramics can be machined using e-beam-machining. There could be thermal damages associated with EBM. However, the heat-affected zone is narrow due to short pulse durations in EBM. The heat-affected zones are generally around 20 to 30 microns. Some materials such as aluminum and titanium alloys are more readily machined compared to steel. Furthermore EBM-machining does not involve cutting forces on the work pieces. This enables machining of fragile and brittle materials by EBM without any significant clamping or attaching as is the case in mechanical machining techniques. Holes can also be drilled at very shallow angles like 20 to 30 degrees. The advantages of Electron-Beam-Machining: EBM provides very high drilling rates when small holes with high aspect ratio are drilled. EBM can machine almost any material regardless of its mechanical properties. No mechanical cutting forces are involved, thus work clamping, holding and fixturing costs are ignorable, and fragile/brittle materials can be processed without problems. Heat affected zones in EBM are small because of shorte pulses. EBM is able of providing any shape of holes with accuracy by using electromagnetic coils to deflect electron beams and the CNC table. The disadvantages of Electron-Beam-Machining: Equipment is expensive and operating and maintaining vacuum systems requires specialized technicians. EBM requires significant vacuum pump down periods for attaining required low pressures. Even though heat affected zone is small in EBM, the recast layer formation occurs frequently. Our many years of experience and know-how helps us to take advantage of this valuable equipment in our manufacturing environment. КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор ПРЕТХОДНА СТРАНИЦА

  • Thermal Infrared Test Equipment, Thermal Camera, Differential Scanning

    Thermal Infrared Test Equipment, Thermal Camera, Differential Scanning Calorimeter, Thermo Gravimetric Analyzer, Thermo Mechanical Analyzer, Dynamic Mechanical Термичка и IR тест опрема КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор Among the many THERMAL ANALYSIS EQUIPMENT, we focus our attention to the popular ones in industry, namely the DIFFERENTIAL SCANNING CALORIMETRY ( DSC ), THERMO-GRAVIMETRIC ANALYSIS ( TGA ), THERMO-MECHANICAL ANALYSIS ( TMA ), DILATOMETRY,DYNAMIC MECHANICAL ANALYSIS ( DMA ), DIFFERENTIAL THERMAL ANALYSIS ( DTA). Our INFRARED TEST EQUIPMENT involves THERMAL IMAGING INSTRUMENTS, INFRARED THERMOGRAPHERS, INFRARED CAMERAS. Some applications for our thermal imaging instruments are Electrical and Mechanical System Inspection, Electronic Component Inspection, Corrosion Damage and Metal Thinning, Flaw Detection. Please download catalogs from colored links below and let us know your prefered brand and model number of the product. You can purchase brand new or refurbished / used Thermal & IR Test Equipment from us: FLUKE Test Tools Catalog (includes Thermal Imagers, Thermometers) HAIDA Color Assessment Cabinet Private Label Hand Tools for Every Industry (This catalog contains a few thermal & IR test instruments. We can private label these hand tools if you wish. In other words, we can put your company name, brand and label on them. This way you can promote your brand by reselling these to your customers.) DIFFERENTIAL SCANNING CALORIMETERS (DSC) : A technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. The temperature program for a DSC analysis is established so that the sample holder temperature increases linearly as a function of time. The reference sample has a well-defined heat capacity over the range of temperatures to be scanned. DSC experiments provide as a result a curve of heat flux versus temperature or versus time. Differential scanning calorimeters are frequently used to study what happens to polymers when they're heated. The thermal transitions of a polymer can be studied using this technique. Thermal transitions are changes that take place in a polymer when they are heated. The melting of a crystalline polymer is an example. The glass transition is also a thermal transition. DSC thermal analysis is carried out for determining Thermal Phase Changes, Thermal Glass Transition Temperature (Tg), Crystalline Melt Temperatures, Endothermic Effects, Exothermic Effects, Thermal Stabilities, Thermal Formulation Stabilities, Oxidative Stabilities, Transition Phenomena, Solid State Structures. DSC analysis determines the Tg Glass Transition Temperature, temperature at which amorphous polymers or an amorphous part of a crystalline polymer go from a hard brittle state to a soft rubbery state, melting point, temperature at which a crystalline polymer melts, Hm Energy Absorbed (joules/gram), amount of energy a sample absorbs when melting, Tc Crystallization Point, temperature at which a polymer crystallizes upon heating or cooling, Hc Energy Released (joules/gram), amount of energy a sample releases when crystallizing. Differential Scanning Calorimeters can be used to determine the thermal properties of plastics, adhesives, sealants, metal alloys, pharmaceutical materials, waxes, foods, oils and lubricants and catalysts….etc. DIFFERENTIAL THERMAL ANALYZERS (DTA): An alternative technique to DSC. In this technique it is the heat flow to the sample and reference that remains the same instead of the temperature. When the sample and reference are heated identically, phase changes and other thermal processes cause a difference in temperature between the sample and reference. DSC measures the energy required to keep both the reference and the sample at the same temperature whereas DTA measures the difference in temperature between the sample and the reference when they are both put under the same heat. So they are similar techniques. THERMOMECHANICAL ANALYZER (TMA) : The TMA reveals the change in the dimensions of a sample as a function of temperature. One can regard TMA as a very sensitive micrometer. The TMA is a device that allows precise measurements of position and can be calibrated against known standards. A temperature control system consisting of a furnace, heat sink and a thermocouple surrounds the samples. Quartz, invar or ceramic fixtures hold the samples during tests. TMA measurements record changes caused by changes in the free volume of a polymer. Changes in free volume are volumetric changes in the polymer caused by the absorption or release of heat associated with that change; the loss of stiffness; increased flow; or by the change in relaxation time. The free volume of a polymer is known to be related to viscoelasticity, aging, penetration by solvents, and impact properties. The glass transition temperature Tg in a polymer corresponds to the expansion of the free volume allowing greater chain mobility above this transition. Seen as an inflection or bending in the thermal expansion curve, this change in the TMA can be seen to cover a range of temperatures. The glass transition temperature Tg is calculated by an agreed upon method. Perfect agreement is not immediately witnessed in the value of the Tg when comparing different methods, however if we carefully examine the agreed upon methods in determining the Tg values then we understand that there is actually good agreement. Besides its absolute value, the width of the Tg is also an indicator of changes in the material. TMA is a relatively simple technique to carry out. TMA is often used for measuring Tg of materials such as highly cross-linked thermoset polymers for which the Differential Scanning Calorimeter (DSC) is difficult to use. In addition to Tg, the coefficient of thermal expansion (CTE) is obtained from thermomechanical analysis. The CTE is calculated from the linear sections of the TMA curves. Another useful result the TMA can provide us is finding out the orientation of crystals or fibers. Composite materials may have three distinct thermal expansion coefficients in the x, y and z directions. By recording the CTE in x, y and z directions one may understand in which direction fibers or crystals are predominantly oriented. To measure the bulk expansion of the material a technique called DILATOMETRY can be used. The sample is immersed in a fluid such as silicon oil or Al2O3 powder in the dilatometer, run thru the temperature cycle and the expansions in all directions are converted to a vertical movement, which is measured by the TMA. Modern thermomechanical analyzers make this easy for users. If a pure liquid is used, the dilatometer is filled with that liquid instead of the silicon oil or alumina oxide. Using diamond TMA the users can run stress strain curves, stress relaxation experiments, creep-recovery and dynamic mechanical temperature scans. The TMA is an indispensible test equipment for industry and research. THERMOGRAVIMETRIC ANALYZERS ( TGA ) : Thermogravimetric Analysis is a technique where the mass of a substance or specimen is monitored as a function of temperature or time. The sample specimen is subjected to a controlled temperature program in a controlled atmosphere. The TGA measures a sample’s weight as it is heated or cooled in its furnace. A TGA instrument consists of a sample pan that is supported by a precision balance. That pan resides in a furnace and is heated or cooled during the test. The mass of the sample is monitored during the test. Sample environment is purged with an inert or a reactive gas. Thermogravimetric analyzers can quantify loss of water, solvent, plasticizer, decarboxylation, pyrolysis, oxidation, decomposition, weight % filler material, and weight % ash. Depending on the case, information may be obtained upon heating or cooling. A typical TGA thermal curve is displayed from left to right. If the TGA thermal curve descends, it indicates a weight loss. Modern TGAs are capable of conducting isothermal experiments. Sometimes the user may want to use a reactive sample purge gases, such as oxygen. When using oxygen as a purge gas user may want to switch gases from nitrogen to oxygen during the experiment. This technique is frequently used to identify the percent carbon in a material. Thermogravimetric analyzer can be used to compare two similar products, as a quality control tool to ensure products meet their material specifications, to ensure products meet safety standards, to determine carbon content, identifying counterfeit products, to identify safe operating temperatures in various gases, to enhance product formulation processes, to reverse engineer a product. Finally it is worth mentioning that combinations of a TGA with a GC/MS are available. GC is short for Gas Chromatography and MS is short for Mass Spectrometry. DYNAMIC MECHANICAL ANALYZER ( DMA) : This is a technique where a small sinusoidal deformation is applied to a sample of known geometry in a cyclic manner. The materials response to stress, temperature, frequency and other values is then studied. The sample can be subjected to a controlled stress or a controlled strain. For a known stress, the sample will deform a certain amount, depending on its stiffness. DMA measures stiffness and damping, these are reported as modulus and tan delta. Because we are applying a sinusoidal force, we can express the modulus as an in-phase component (the storage modulus), and an out of phase component (the loss modulus). The storage modulus, either E’ or G’, is the measure of the sample’s elastic behavior. The ratio of the loss to the storage is the tan delta and is called damping. It is considered a measure of the energy dissipation of a material. Damping varies with the state of the material, its temperature, and with the frequency. DMA is sometimes called DMTA standing for DYNAMIC MECHANICAL THERMAL ANALYZER. Thermomechanical Analysis applies a constant static force to a material and records the material dimensional changes as temperature or time varies. The DMA on the other hand, applies an oscillatory force at a set frequency to the sample and reports changes in stiffness and damping. DMA data provides us modulus information whereas the TMA data gives us the coefficient of thermal expansion. Both techniques detect transitions, but DMA is much more sensitive. Modulus values change with temperature and transitions in materials can be seen as changes in the E’ or tan delta curves. This includes glass transition, melting and other transitions that occur in the glassy or rubbery plateau which are indicators of subtle changes in the material. THERMAL IMAGING INSTRUMENTS, INFRARED THERMOGRAPHERS, INFRARED CAMERAS : These are devices that form an image using infrared radiation. Standard everyday cameras form images using visible light in the 450–750 nanometer wavelength range. Infrared cameras however operate in the infrared wavelength range as long as 14,000 nm. Generally, the higher an object's temperature, the more infrared radiation is emitted as black-body radiation. Infrared cameras work even in total darkness. Images from most infrared cameras have a single color channel because the cameras generally use an image sensor that does not distinguish different wavelengths of infrared radiation. To differentiate wavelengths color image sensors require a complex construction. In some test instruments these monochromatic images are displayed in pseudo-color, where changes in color are used rather than changes in intensity to display changes in the signal. The brightest (warmest) parts of images are customarily colored white, intermediate temperatures are colored red and yellow, and the dimmest (coolest) parts are colored black. A scale is generally shown next to a false color image to relate colors to temperatures. Thermal cameras have resolutions considerably lower than that of optical cameras, with values in the neighborhood of 160 x 120 or 320 x 240 pixels. More expensive infrared cameras can achieve a resolution of 1280 x 1024 pixels. There are two main categories of thermographic cameras: COOLED INFRARED IMAGE DETECTOR SYSTEMS and UNCOOLED INFRARED IMAGE DETECTOR SYSTEMS. Cooled thermographic cameras have detectors contained in a vacuum-sealed case and are cryogenically cooled. The cooling is necessary for the operation of the semiconductor materials used. Without cooling, these sensors would be flooded by their own radiation. Cooled infrared cameras are however expensive. Cooling requires much energy and is time-consuming, requiring several minutes of cooling time prior to working. Although the cooling apparatus is bulky and expensive, cooled infrared cameras offer users superior image quality compared to uncooled cameras. The better sensitivity of cooled cameras allows the use of lenses with higher focal length. Bottled nitrogen gas can be used for cooling. Uncooled thermal cameras use sensors operating at ambient temperature, or sensors stabilized at a temperature close to ambient using temperature control elements. Uncooled infrared sensors are not cooled to low temperatures and therefore do not require bulky and expensive cryogenic coolers. Their resolution and image quality however is lower as compared to cooled detectors. Thermographic cameras offer many opportunities. Overheating spots is power lines can be located and repaired. Electric circuitry can be observed and unusually hot spots can indicate problems such as short circuit. These cameras are also widely used in buildings and energy systems to locate places where there is significant heat loss so that better heat insulation can be considered at those points. Thermal imaging instruments serve as non-destructive test equipment. For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com ПРЕТХОДНА СТРАНИЦА

  • Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff...

    Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff, Crowned Involute Ball Spline Manufacturing, Serrations, Gib-Head Key from AGS-TECH Inc. Производство на клучеви и шилести и иглички Other miscellaneous fasteners we provide are keys, splines, pins, serrations. KEYS: A key is a piece of steel lying partly in a groove in the shaft and extending into another groove in the hub. A key is used to secure gears, pulleys, cranks, handles, and similar machine parts to shafts, so that the motion of the part is transmitted to the shaft, or the motion of the shaft to the part, without slippage. The key may also act in a safety capacity; its size can be calculated so that when overloading takes place, the key will shear or break before the part or shaft breaks or deforms. Our keys are also available with a taper on their top surfaces. For tapered keys, the keyway in the hub is tapered to accommodate the taper on the key. Some major types of keys we offer are: Square key Flat key Gib-Head Key – These keys are the same as flat or square tapered keys but with added head for ease of removal. Pratt and Whitney Key – These are rectangular keys with rounded edges. Two-thirds of these keys sit in the shaft and one-third in the hub. Woodruff Key – These keys are semicircular and fit into semicircular keyseats in the shafts and rectangular keyways in the hub. SPLINES: Splines are ridges or teeth on a drive shaft that mesh with grooves in a mating piece and transfer torque to it, maintaining the angular correspondence between them. Splines are capable of carrying heavier loads than keys, permit lateral movement of a part, parallel to the axis of the shaft, while maintaining positive rotation, and allow the attached part to be indexed or changed to another angular position. Some splines have straight-sided teeth, whereas others have curved-sided teeth. Splines with curved-sided teeth are called involute splines. Involute splines have pressure angles of 30, 37.5 or 45 degrees. Both internal and external spline versions are available. SERRATIONS are shallow involute splines with 45 degree pressure angles and are used for holding parts like plastic knobs. Major types of splines we offer are: Parallel key splines Straight-side splines – Also called parallel-side splines, they are used in many automotive and machine industry applications. Involute splines – These splines are similar in shape to involute gears but have pressure angles of 30, 37.5 or 45 degrees. Crowned splines Serrations Helical splines Ball splines PINS / PIN FASTENERS: Pin fasteners are an inexpensive and effective method of assembly when loading is primarily in shear. Pin fasteners can be separated into two groups: Semipermanent Pinsand Quick-Release Pins. Semipermanent pin fasteners require application of pressure or the aid of tools for installation or removal. Two basic types are Machine Pins and Radial Locking Pins. We offer the following machine pins: Hardened and ground dowel pins – We have standardized nominal diameters between 3 to 22 mm available and can machine custom sized dowel pins. Dowel pins can be used to hold laminated sections together, they can fasten machine parts with high alignment accuracy, lock components on shafts. Taper pins – Standard pins with 1:48 taper on the diameter. Taper pins are suitable for light-duty service of wheels and levers to shafts. Clevis pins - We have standardized nominal diameters between 5 to 25 mm available and can machine custom sized clevis pins. Clevis pins can be used on mating yokes, forks and eye members in knuckle joints. Cotter pins – Standardized nominal diameters of cotter pins range from 1 to 20 mm. Cotter pins are locking devices for other fasteners and are generally used with a castle or slotted nuts on bolts, screws, or studs. Cotter pins enable low-cost and convenient locknut assemblies. Two basic pin forms are offered as Radial Locking Pins, solid pins with grooved surfaces and hollow spring pins which are either slotted or come with spiral-wrapped configuration. We offer the following radial locking pins: Grooved straight pins – Locking is enabled by parallel, longitudinal grooves uniformly spaced around the pin surface. Hollow spring pins – These pins are compressed when driven into holes and pins exert spring pressure against the hole walls along their entire engaged length to produce locking fits Quick-release pins: Available types vary widely in head styles, types of locking and release mechanisms, and range of pin lengths. Quick-release pins have applications such as clevis-shackle pin, draw-bar hitch pin, rigid coupling pin, tubing lock pin, adjustment pin, swivel hinge pin. Our quick release pins can be grouped into one of two basic types: Push-pull pins – These pins are made with either a solid or hollow shank containing a detent assembly in the form of a locking lug, button or ball, backed up by some sort of plug, spring or resilient core. The detent member projects from the pins surface until sufficient force is applied in assembly or removal to overcome the spring action and to release the pins. Positive-locking pins - For some quick-release pins, the locking action is independent of insertion and removal forces. Positive-locking pins are suited for shear-load applications as well as for moderate tension loads. КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор ПРЕТХОДНА СТРАНИЦА

  • Embedded Systems, Embedded Computer, Industrial Computers, Janz Tec

    Embedded Systems, Embedded Computer, Industrial Computers, Janz Tec, Korenix, Industrial Workstations, Servers, Computer Rack, Single Board Computer Вградени системи и индустриски компјутери и панел компјутер Прочитај повеќе Вградени системи и компјутери Прочитај повеќе Панелен компјутер, дисплеи со повеќе допир, екрани на допир Прочитај повеќе Индустриски компјутер Прочитај повеќе Индустриски работни станици Прочитај повеќе Опрема за вмрежување, мрежни уреди, средни системи, единица за меѓусебно работење Прочитај повеќе Уреди за складирање, низи на дискови и системи за складирање, SAN, NAS Прочитај повеќе Индустриски сервери Прочитај повеќе Шасии, лавици, држачи за индустриски компјутери Прочитај повеќе Додатоци, модули, табли за носачи за индустриски компјутери Прочитај повеќе Автоматизација и интелигентни системи Како добавувач на индустриски производи, ние ви нудиме некои од најнезаменливите индустриски компјутери и сервери и уреди за вмрежување и складирање, вградени компјутери и системи, компјутери со една плоча, панел компјутер, индустриски компјутер, груб компјутер, компјутери со екран на допир, индустриска работна станица, индустриски компјутер компоненти и додатоци, дигитални и аналогни I/O уреди, рутери, мост, преклопна опрема, центар, повторувач, прокси, заштитен ѕид, модем, контролер на мрежен интерфејс, протокол конвертор, низи за складирање прикачени на мрежа (NAS), низи за мрежна област за складирање (SAN), повеќеканални релејни модули, Full-CAN контролер за приклучоци за MODULbus, носач на MODULbus, модул за инкрементален енкодер, концепт за интелигентна врска со PLC, контролер на мотори за DC серво мотори, модул за сериски интерфејс, табла за прототип на VMEbus, интелигентен роб интерфејс profibus DP, софтвер, поврзана електроника, шасија-лавици-приклучоци. Ние го носиме најдоброто од светските индустриски компјутерски производи од фабрика до вашата врата. Нашата предност е во тоа што можеме да ви понудиме различни имиња на брендови како што се списоците на Janz Tec и Korenixfor или пониски од нашите продавници. Исто така, она што не прави посебни е нашата способност да ви понудиме варијации на производи / сопствени конфигурации / интеграција со други системи што не можете да ги набавите од други извори. Ви нудиме висококвалитетна опрема со име на брендот по список цена или пониска. Има значителни попусти на објавените цени доколку вашата количина на нарачка е значителна. Поголемиот дел од нашата опрема е на залиха. Ако не е на залиха, бидејќи ние сме претпочитан препродавач и дистрибутер, сепак можеме да ви го доставиме во пократко време на испорака. Покрај залихите, ние сме во состојба да ви понудиме специјални производи дизајнирани и произведени според вашите потреби. Само кажете ни какви разлики ви се потребни на вашиот индустриски компјутерски систем и ние ќе го направиме според вашите потреби и барања. Ви нудиме можност за ПРОИЗВОДСТВО И ИНЖЕНЕРСКА ИНТЕГРАЦИЈА. Ние, исто така, градиме ПРИЛАГОДНИ СИСТЕМИ ЗА АВТОМАЦИЈА, СИСТЕМИ ЗА СЛЕДЕЊЕ и КОНТРОЛА НА ПРОЦЕСИТЕ со интегрирање на компјутери, фази на преведување, ротациони фази, моторизирани компоненти, краци, картички за собирање податоци, картички за контрола на процеси, сензори, актуатори и други хардверски и софтверски компоненти на потреба. Без оглед на вашата локација на земјата, ние испраќаме во рок од неколку дена до вашата врата. Имаме попуст договори за испорака со UPS, FEDEX, TNT, DHL и стандарден воздух. Можете да нарачате онлајн користејќи опции како што се кредитни картички користејќи ја нашата PayPal сметка, жичен трансфер, заверен чек или паричен налог. Ако сакате да разговарате со нас пред да донесете одлука или ако имате какви било прашања, се што ви треба е да ни се јавите и еден од нашите искусни компјутерски инженери и автоматизација ќе ви помогне. За да бидеме поблиску до вас, имаме канцеларии и магацини на различни глобални локации. Кликнете на соодветните подменија погоре за да прочитате повеќе за нашите производи во категоријата индустриски компјутери. Преземете ја брошурата за нашата ПРОГРАМА ЗА ПАРТНЕРСТВО ЗА ДИЗАЈН За подетални информации, исто така ве покануваме да ја посетите нашата продавница за индустриски компјутери http://www.agsindustrialcomputers.com КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор ПРЕТХОДНА СТРАНИЦА

  • Chemical Physical Environmental Analyzers, NDT, Nondestructive Testing

    Chemical Physical Environmental Analyzers, NDT, Nondestructive Testing, Analytical Balance, Chromatograph, Mass Spectrometer, Gas Analyzer, Moisture Analyzer Хемиски, физички, еколошки анализатори The industrial CHEMICAL ANALYZERS we provide are: CHROMATOGRAPHS, MASS SPECTROMETERS, RESIDUAL GAS ANALYZERS, GAS DETECTORS, MOISTURE ANALYZER, DIGITAL GRAIN AND WOOD MOISTURE METERS, ANALYTICAL BALANCE The industrial PHYSICAL ANALYSIS INSTRUMENTS we offer are: SPECTROPHOTOMETERS, POLARIMETER, REFRACTOMETER, LUX METER, GLOSS METERS, COLOR READERS, COLOR DIFFERENCE METER , DIGITAL LASER DISTANCE METERS, LASER RANGEFINDER, ULTRASONIC CABLE HEIGHT METER, SOUND LEVEL METER, ULTRASONIC DISTANCE METER , DIGITAL ULTRASONIC FLAW DETECTOR , HARDNESS TESTER , METALLURGICAL MICROSCOPES , SURFACE ROUGHNESS TESTER , ULTRASONIC THICKNESS GAUGE , VIBRATION METER , TACHOMETER . and others...... For the highlighted products, please visit our related pages by clicking on the corresponding colored text above. The ENVIRONMENTAL ANALYZERS we provide are: TEMPERATURE & HUMIDITY CYCLING CHAMBERS, ENVIRONMENTAL TESTING CHAMBERS, LIQUID ANALYSIS & TEST SYSTEMS. Click on Colored Text to Download Catalogs below. Choose the brand and model number of your interest and let us know whether you need brand new, or refurbished / used equipment: AMETEK-LLOYD Instruments Materials Testing (Versatile Materials Testing Equipment, Universal Test Machines, Tensile Strength, Compressibility, Hardness, Elasticity, Peeling, Adhesion...etc.) ELCOMETER Inspection Equipment Catalog ( Physical Test Equipment , Gloss & Reflectance , Colour Measurement , Fineness Of Grind/Dispersion , Density & Specific Gravity , Viscosity & Flow Measurement , Film Application & Test Charts , Drying Time & Permeability , Washability & Abrasion , Hardness & Scratch Resistance , Elasticity, Bend & Impact Testers , Flash Point, Concrete Inspection Equipment ) FLUKE Test Tools Catalog (includes Indoor Air Quality Tools, Air Meter, Airflow Meter, Temperature-Humidity Meter, Particle Counter, Carbon Monoxide Meters) HAIDA Anti-Yellowing Aging Test Chamber HAIDA Color Assessment Cabinet HAIDA IPX1&X2 Water Drip Test Chamber HAIDA Rapid-Rate Thermal Cycle Chamber HAIDA Salt Corrosion Spray Test Chamber HAIDA Salt Spray Test Chamber HAIDA Sand Dust Proofing Test Chamber HAIDA Temperature Humidity Test Chamber HAIDA Thermal Shock Test Chamber HAIDA Ultraviolet Weathering Test Chamber HAIDA Walk-In Environmental Test Chamber HAIDA Xenon Aging Test Chamber High HAIDA Xenon Aging Test Chamber Standard Helium Leak Tester (We private label these with your brand name and logo if you wish) METTLER TOLEDO Weighing Solutions for Retail Stores SADT-SINOAGE brand metrology and test equipment, please CLICK HERE . You will find some models of the above listed equipment here. Sensors & Analytical Measurement Systems for Liquid Analysis (Products in this brochure are used for environmental tests and and tests carried out in process industries. Example products are conductivity sensors, dissolved oxygen sensors, chlorine sensors, turbidity/suspended solids sensors, optical sensors, transmitters....etc. We private label these with your brand name and logo if you wish) Sensors & Analytical Measurement Systems for Optical OEM Applications in Liquid Analysis (We private label these with your brand name and logo if you wish) Sensors & Analytical Measurement Systems for pH Testing (We private label these with your brand name and logo if you wish) Some fundamental information on these test systems: CHROMATOGRAPHY is a physical method of separation that distribute s components to separate between two phases, one stationary (stationary phase), the other (the mobile phase) moving in a definite direction. In other words, it refers to laboratory techniques for the separation of mixtures. The mixture is dissolved in a fluid called the mobile phase, which carries it through a structure holding another material called the stationary phase. The various constituents of the mixture travel at different speeds, which causes them to separate. The separation is based on differential partitioning between the mobile and stationary phases. Small differences in partition coefficient of a compound results in differential retention on the stationary phase and thus changing the separation. Chromatography can be used to separate the components of a mixture for more advanced use such as purification) or for measuring the relative proportions of analytes (which is the substance to be separated during chromatography) in a mixture. Several chromatographic methods exist, such as paper chromatography, gas chromatography and high performance liquid chromatography. ANALYTICAL CHROMATOGRAPHY is used to determine the existence and the concentration of analyte(s) in a sample. In a chromatogram different peaks or patterns correspond to different components of the separated mixture. In an optimal system each signal is proportional to the concentration of the corresponding analyte that was separated. An equipment called CHROMATOGRAPH enables a sophisticated separation. There are specialized types according to the physical state of the mobile phase such as GAS CHROMATOGRAPHS and LIQUID CHROMATOGRAPHS. Gas chromatography (GC), also sometimes called gas-liquid chromatography (GLC), is a separation technique in which the mobile phase is a gas. High temperatures used in Gas Chromatographs make it unsuitable for high molecular weight biopolymers or proteins encountered in biochemistry because heat denatures them. The technique is however well suited for use in the petrochemical, environmental monitoring, chemical research and industrial chemical fields. On the other hand, Liquid Chromatography (LC) is a separation technique in which the mobile phase is a liquid. In order to measure the characteristics of individual molecules, a MASS SPECTROMETER converts them to ions so that they can be accelerated, and moved about by external electric and magnetic fields. Mass spectrometers are used in Chromatographs explained above, as well as in other analysis instruments. The associated components of a typical mass spectrometer are: Ion Source: A small sample is ionized, usually to cations by loss of an electron. Mass Analyzer: The ions are sorted and separated according to their mass and charge. Detector: The separated ions are measured and results displayed on a chart. Ions are very reactive and short-lived, therefore their formation and manipulation must be conducted in a vacuum. The pressure under which ions may be handled is roughly 10-5 to 10-8 torr. The three tasks listed above may be accomplished in different ways. In one common procedure, ionization is effected by a high energy beam of electrons, and ion separation is achieved by accelerating and focusing the ions in a beam, which is then bent by an external magnetic field. The ions are then detected electronically and the resulting information is stored and analyzed in a computer. The heart of the spectrometer is the ion source. Here molecules of the sample are bombarded by electrons emanating from a heated filament. This is called an electron source. Gases and volatile liquid samples are allowed to leak into the ion source from a reservoir and non-volatile solids and liquids may be introduced directly. Cations formed by the electron bombardment are pushed away by a charged repeller plate (anions are attracted to it), and accelerated toward other electrodes, having slits through which the ions pass as a beam. Some of these ions fragment into smaller cations and neutral fragments. A perpendicular magnetic field deflects the ion beam in an arc whose radius is inversely proportional to the mass of each ion. Lighter ions are deflected more than heavier ions. By varying the strength of the magnetic field, ions of different mass can be focused progressively on a detector fixed at the end of a curved tube under a high vacuum. A mass spectrum is displayed as a vertical bar graph, each bar representing an ion having a specific mass-to-charge ratio (m/z) and the length of the bar indicates the relative abundance of the ion. The most intense ion is assigned an abundance of 100, and it is referred to as the base peak. Most of the ions formed in a mass spectrometer have a single charge, so the m/z value is equivalent to mass itself. Modern mass spectrometers have very high resolutions and can easily distinguish ions differing by only a single atomic mass unit (amu). A RESIDUAL GAS ANALYZER (RGA) is a small and rugged mass spectrometer. We have explained mass spectrometers above. RGAs are designed for process control and contamination monitoring in vacuum systems such as research chambers, surface science setups, accelerators, scanning microscopes. Utilizing quadrupole technology, there are two implementations, utilizing either an open ion source (OIS) or a closed ion source (CIS). RGAs are used in most cases to monitor the quality of the vacuum and easily detect minute traces of impurities possessing sub-ppm detectability in the absence of background interferences. These impurities can be measured down to (10)Exp -14 Torr levels, Residual Gas Analyzers are also used as sensitive in-situ, helium leak detectors. Vacuum systems require checking of the integrity of the vacuum seals and the quality of the vacuum for air leaks and contaminants at low levels before a process is initiated. Modern residual gas analyzers come complete with a quadrupole probe, electronics control unit , and a real-time Windows software package that is used for data acquisition and analysis, and probe control. Some software supports multiple head operation when more than one RGA is needed. Simple design with a small number of parts will minimize outgassing and reduce the chances of introducing impurities into your vacuum system. Probe designs using self-aligning parts will ensure easy reassembled after cleaning. LED indicators on modern devices provide instant feedback on the status of the electron multiplier, filament, electronics system and the probe. Long-life, easily changeable filaments are used for electron emission. For increased sensitivity and faster scan rates, an optional electron multiplier is sometimes offered that detects partial pressures down to 5 × (10)Exp -14 Torr. Another attractive feature of residual gas analyzers is the built-in degassing feature. Using electron impact desorption, the ion source is thoroughly cleaned, greatly reducing the ionizer's contribution to background noise. With a large dynamic range the user can make measurements of small and large gas concentrations simultaneously. A MOISTURE ANALYZER determines the remaining dry mass after a drying process with infrared energy of the original matter which is previously weighed. Humidity is calculated in relation to the weight of the wet matter. During the drying process, the decrease of moisture in the material is shown on the display. The moisture analyzer determines moisture and the amount of dry mass as well as the consistency of volatile and fixed substances with high accuracy. The weighing system of the moisture analyzer possesses all the properties of modern balances. These metrology tools are used in the industrial sector to analyze pastes, wood, adhesive materials, dust,…etc. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be controlled for plastics, pharmaceuticals and heat treatment processes. Trace moisture in gases and liquids need to be measured and controlled as well. Examples include dry air, hydrocarbon processing, pure semiconductor gases, bulk pure gases, natural gas in pipelines….etc. The loss on drying type analyzers incorporate an electronic balance with a sample tray and surrounding heating element. If the volatile content of the solid is primarily water, the LOD technique gives a good measure of moisture content. An accurate method for determining the amount of water is the Karl Fischer titration, developed by the German chemist. This method detects only water, contrary to loss on drying, which detects any volatile substances. Yet for natural gas there are specialized methods for the measurement of moisture, because natural gas poses a unique situation by having very high levels of solid and liquid contaminants as well as corrosives in varying concentrations. MOISTURE METERS are test equipment for measuring the percentage of water in a substance or material. Using this information, workers in various industries determine if the material is ready for use, too wet or too dry. For example, wood and paper products are very sensitive to their moisture content. Physical properties including dimensions and weight are strongly affected by moisture content. If you are purchasing large quantities of wood by weight, it will be a wise thing to measure the moisture content to make sure it is not intentionally watered to increase the price. Generally two basic types of moisture meters are available. One type measures the electrical resistance of the material, which becomes increasingly lower as the moisture content of it rises. With the electrical resistance type of moisture meter, two electrodes are driven into the material and the electrical resistance is translated into moisture content on the device’s electronic output. A second type of moisture meter relies on the dielectric properties of the material, and requires only surface contact with it. The ANALYTICAL BALANCE is a basic tool in quantitative analysis, used for the accurate weighing of samples and precipitates. A typical balance should be able to determine differences in mass of 0.1 milligram. In microanalyses the balance must be about 1,000 times more sensitive. For special work, balances of even higher sensitivity are available. The measuring pan of an analytical balance is inside a transparent enclosure with doors so that dust does not collect and air currents in the room do not affect the balance's operation. There is a smooth turbulence-free airflow and ventilation that prevents balance fluctuation and the measure of mass down to 1 microgram without fluctuations or loss of product. Maintaining consistent response throughout the useful capacity is achieved by maintaining a constant load on the balance beam, thus the fulcrum, by subtracting mass on the same side of the beam to which the sample is added. Electronic analytical balances measure the force needed to counter the mass being measured rather than using actual masses. Therefore they must have calibration adjustments made to compensate for gravitational differences. Analytical balances use an electromagnet to generate a force to counter the sample being measured and outputs the result by measuring the force needed to achieve balance. SPECTROPHOTOMETRY is the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength, and SPECTROPHOTOMETER is the test equipment used for this purpose. The spectral bandwidth (the range of colors it can transmit through the test sample), the percentage of sample-transmission, the logarithmic range of sample-absorption and percentage of reflectance measurement are critical for spectrophotometers. These test instruments are widely used in optical component testing where optical filters, beam splitters, reflectors, mirrors…etc need to be evaluated for their performance. There are many other applications of spectrophotometers including the measurement of transmission and reflection properties of pharmaceutical and medical solutions, chemicals, dyes, colors……etc. These tests ensure consistency from batch to batch in production. A spectrophotometer is able to determine, depending on the control or calibration, what substances are present in a target and their quantities through calculations using observed wavelengths. The range of wavelengths covered is generally between 200 nm - 2500 nm using different controls and calibrations. Within these ranges of light, calibrations are needed on the machine using specific standards for the wavelengths of interest. There are two major types of spectrophotometers, namely single beam and double beam. Double beam spectrophotometers compare the light intensity between two light paths, one path containing a reference sample and the other path containing the test sample. A single-beam spectrophotometer on the other hand measures the relative light intensity of the beam before and after a test sample is inserted. Although comparing measurements from double-beam instruments are easier and more stable, single-beam instruments can have a larger dynamic range and are optically simpler and more compact. Spectrophotometers can be installed also into other instruments and systems which can help users to perform in-situ measurements during production…etc. The typical sequence of events in a modern spectrophotometer can be summarized as: First the light source is imaged upon the sample, a fraction of the light is transmitted or reflected from the sample. Then the light from the sample is imaged upon the entrance slit of the monochromator, which separates the wavelengths of light and focuses each of them onto the photodetector sequentially. The most common spectrophotometers are UV & VISIBLE SPECTROPHOTOMETERS which operate in the ultraviolet and 400–700 nm wavelength range. Some of them cover the near-infrared region too. On the other hand, IR SPECTROPHOTOMETERS are more complicated and expensive because of the technical requirements of measurement in the infrared region. Infrared photosensors are more valuable and Infrared measurement is also challenging because almost everything emits IR light as thermal radiation, especially at wavelengths beyond about 5 m. Many materials used in other types of spectrophotometers such as glass and plastic absorb infrared light, making them unfit as the optical medium. Ideal optical materials are salts such as potassium bromide, which do not absorb strongly. A POLARIMETER measures the angle of rotation caused by passing polarized light through an optically active material. Some chemical materials are optically active, and polarized (unidirectional) light will rotate either to the left (counter-clockwise) or right (clockwise) when passed through them. The amount by which the light is rotated is called the angle of rotation. One popular application, concentration and purity measurements are made to determine product or ingredient quality in the food, beverage and pharmaceutical industries. Some samples that display specific rotations that can be calculated for purity with a polarimeter include the Steroids, Antibiotics, Narcotics, Vitamins, Amino Acids, Polymers, Starches, Sugars. Many chemicals exhibit a unique specific rotation which can be used to distinguish them. A Polarimeter can identify unknown specimens based on this if other variables like concentration and length of sample cell are controlled or at least known. On the other hand, if the specific rotation of a sample is already known, then the concentration and/or purity of a solution containing it can be calculated. Automatic polarimeters calculate these once some input on variables are entered by the user. A REFRACTOMETER is a piece of optical test equipment for the measurement of index of refraction. These instruments measure the extent to which light is bent, i.e. refracted when it moves from air into the sample and are typically used to determine the refractive index of samples. There are five types of refractometers: traditional handheld refractometers, digital handheld refractometers, laboratory or Abbe refractometers, inline process refractometers and finally Rayleigh Refractometers for measuring the refractive indices of gases. Refractometers are widely used in various disciplines such as mineralogy, medicine, veterinary, automotive industry…..etc., to examine products as diverse as gemstones, blood samples, auto coolants, industrial oils. The refractive index is an optical parameter to analyze liquid samples. It serves to identify or confirm the identity of a sample by comparing its refractive index to known values, helps assess the purity of a sample by comparing its refractive index to the value for the pure substance, helps determine the concentration of a solute in a solution by comparing the solution's refractive index to a standard curve. Let us go briefly over the types of refractometers: TRADITIONAL REFRACTOMETERS take advantage of the critical angle principle by which a shadow line is projected onto a small glass thru prisms and lenses. The specimen is placed between a small cover plate and a measuring prism. The point at which the shadow line crosses the scale indicates the reading. There is automatic temperature compensation, because the refractive index varies based on temperature. DIGITAL HANDHELD REFRACTOMETERS are compact, lightweight, water and high temperature resistant testing devices. Measurement times are very short and in the range of two to three seconds only. LABORATORY REFRACTOMETERS are ideal for users planning to measure multiple parameters and get the outputs in various formats, take printouts. Laboratory refractometers offer a wider range and higher accuracy than handheld refractometers. They can be connected to computers and controlled externally. INLINE PROCESS REFRACTOMETERS can be configured to constantly collect specified statistics of the material remotely. The microprocessor control provides computer power that makes these devices very versatile, time-saving and economical. Finally, the RAYLEIGH REFRACTOMETER is used for measuring the refractive indices of gases. Quality of light is very important in the workplace, factory floor, hospitals, clinics, schools, public buildings and many other places. LUX METERS are used to measure luminuous intensity (brightness). Special optic filters match the spectral sensitivity of the human eye. Luminous intensity is measured and reported in foot-candle or lux (lx). One lux is equal to one lumen per square meter and one foot-candle is equal to one lumen per square foot. Modern lux meters are equipped with internal memory or a data logger to record the measurements, cosine correction of the angle of incident light and software to analyze readings. There are lux meters for measuring UVA radiation. High end version lux meters offer Class A status to meet CIE, graphic displays, statistical analysis functions, large measurement range up to 300 klx, manual or automatic range selection, USB and other outputs. A LASER RANGEFINDER is a test instrument which uses a laser beam to determine the distance to an object. Most laser rangefinders operation is based on the time of flight principle. A laser pulse is sent in a narrow beam towards the object and the time taken by the pulse to be reflected off the target and returned to the sender is measured. This equipment is not suitable however for high precision sub-millimeter measurements. Some laser rangefinders use the Doppler effect technique to determine whether the object is moving towards or away from the rangefinder as well as the object’s speed. The precision of a laser rangefinder is determined by the rise or fall time of the laser pulse and the speed of the receiver. Rangefinders that use very sharp laser pulses and very fast detectors are capable to measure the distance of an object to within a few millimeters. Laser beams will eventually spread over long distances due to the divergence of the laser beam. Also distortions caused by air bubbles in the air make it difficult to get an accurate reading of the distance of an object over long distances of more than 1 km in open and unobscured terrain and over even shorter distances in humid and foggy places. High end military rangefinders operate at ranges up to 25 km and are combined with binoculars or monoculars and can be connected to computers wirelessly. Laser rangefinders are used in 3-D object recognition and modelling, and a wide variety of computer vision-related fields such as time-of-flight 3D scanners offering high-precision scanning abilities. The range data retrieved from multiple angles of a single object can be used to produce complete 3-D models with as little error as possible. Laser rangefinders used in computer vision applications offer depth resolutions of tenths of millimeters or less. Many other application areas for laser rangefinders exist, such as sports, construction, industry, warehouse management. Modern laser measurement tools include functions such as capability to make simple calculations, such as the area and volume of a room, switching between imperial and metric units. An ULTRASONIC DISTANCE METER works on a similar principle as a laser distance meter, but instead of light it uses sound with a pitch too high for the human ear to hear. The speed of sound is only about 1/3 of a km per second, so the time measurement is easier. Ultrasound has many of the same advantages of a Laser Distance Meter, namely a single person and one-handed operation. There is no need to access the target personally. However ultrasound distance meters are intrinsically less accurate, because sound is far more difficult to focus than laser light. Accuracy is typically several centimeters or even worse, while it is a few millimeters for laser distance meters. Ultrasound needs a large, smooth, flat surface as the target. This is a severe limitation. You can’t measure to a narrow pipe or similar smaller targets. The ultrasound signal spreads out in a cone from the meter and any objects in the way can interfere with the measurement. Even with laser aiming, one cannot be sure that the surface from which the sound reflection is detected is the same as that where the laser dot is showing. This can lead to errors. Range is limited to tens of meters, whereas laser distance meters can measure hundreds of meters. Despite all these limitations, ultrasonic distance meters cost much less. Handheld ULTRASONIC CABLE HEIGHT METER is a test instrument for measuring cable sag, cable height and overhead clearance to ground. It is the safest method for cable height measurement because it eliminates cable contact and the use of heavy fiberglass poles. Similar to other ultrasonic distance meters, the cable height meter is a one-man simple operation device that sends ultrasound waves to target, measures time to echo, calculates distance based on speed of sound and adjusts itself for air temperature. A SOUND LEVEL METER is a testing instrument that measures sound pressure level. Sound level meters are useful in noise pollution studies for the quantification of different kinds of noise. The measurement of noise pollution is important in construction, aerospace, and many other industries. The American National Standards Institute (ANSI) specifies sound level meters as three different types, namely 0, 1 and 2. The relevant ANSI standards set performance and accuracy tolerances according to three levels of precision: Type 0 is used in laboratories, Type 1 is used for precision measurements in the field, and Type 2 is used for general-purpose measurements. For compliance purposes, readings with an ANSI Type 2 sound level meter and dosimeter are considered to have an accuracy of ±2 dBA, whereas a Type 1 instrument has an accuracy of ±1 dBA. A Type 2 meter is the minimum requirement by OSHA for noise measurements, and is usually sufficient for general purpose noise surveys. The more accurate Type 1 meter is intended for the design of cost-effective noise controls. International industry standards related to frequency weighting, peak sound pressure levels….etc are beyond the scope here due to the details associated with them . Before purchasing a particular sound level meter, we advise that you make sure to know what standards compliance your workplace requires and make the right decision in purchasing a particular model of test instrument. ENVIRONMENTAL ANALYZERS like TEMPERATURE & HUMIDITY CYCLING CHAMBERS, ENVIRONMENTAL TESTING CHAMBERS come in a variety of sizes, configurations and functions depending on the area of application, the specific industrial standards compliance needed and the end users needs. They can be configured and manufactured according to custom requirements. There is a broad range of test specifications such as MIL-STD, SAE, ASTM to help determine the most appropriate temperature humidity profile for your product. Temperature / humidity testing is generally carried out for : Accelerated Aging: Estimates the life of a product when actual lifespan is unknown under normal use. Accelerated aging exposes the product to high levels of controlled temperature, humidity, and pressure within a relatively shorter timeframe than the expected lifespan of the product. Instead of waiting long times and years to see product lifespan, one can determine it using these tests within a much shorter and reasonable time using these chambers. Accelerated Weathering: Simulates exposure from moisture, dew, heat, UV….etc. Weathering and UV exposure causes damage to coatings, plastics, inks, organic materials, devices…etc. Fading, yellowing, cracking, peeling, brittleness, loss of tensile strength, and delamination occur under prolonged UV exposure. Accelerated weathering tests are designed to determine if products will stand the test of time. Heat Soak/Exposure Thermal Shock: Aimed to determine the ability of materials, parts and components to withstand sudden changes in temperature. Thermal shock chambers rapidly cycle products between hot and cold temperature zones to see the effect of multiple thermal expansions and contractions as would be the case in nature or industrial environments throughout the many seasons and years. Pre & Post Conditioning: For conditioning of materials, containers, packages, devices…etc For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор ПРЕТХОДНА СТРАНИЦА

  • Mechanical Testing Instruments - Tension Tester - Torsion Test Machine

    Mechanical Testing Instruments - Tension Tester - Torsion Test Machine - Bending Tester - Impact Test Device - Concrete Tester - Compression Testing Machine - H Инструменти за механички испитувања Among the large number of MECHANICAL TEST INSTRUMENTS we focus our attention to the most essential and popular ones: IMPACT TESTERS, CONCRETE TESTERS / SCHMIDT HAMMER, TENSION TESTERS, COMPRESSION TESTING MACHINES, TORSION TEST EQUIPMENT, FATIGUE TEST MACHINE, THREE & FOUR POINT BENDING TESTERS, COEFFICIENT OF FRICTION TESTERS, HARDNESS & THICKNESS TESTERS, SURFACE ROUGHNESS TESTERS, VIBRATION METERS, TACHOMETERS, PRECISION ANALYTICAL BALANCE. We offer our customers quality brands such as ELCOMETER, SADT, SINOAGE for under list prices. Please choose from the downloadable catalogs below the brand name and model number of the equipment you need and tell us whether you want a brand new or refurbished / used equipment: AMETEK-LLOYD Instruments Materials Testing (Versatile Materials Testing Equipment, Universal Test Machines, Tensile Strength, Compressibility, Hardness, Elasticity, Peeling, Adhesion...etc.) ELCOMETER Inspection Equipment Catalog ( Physical Test Equipment , Concrete Inspection Equipment, Concrete Test Hammers, Fineness Of Grind/Dispersion , Density & Specific Gravity , Viscosity & Flow Measurement , Film Application & Test Charts , Drying Time & Permeability , Washability & Abrasion , Hardness & Scratch Resistance , Elasticity, Bend & Impact Testers , Flash Point ) HAIDA Adhesive Tape Peel Test Machine HAIDA Computerized Universal Test Machine with Extensometer HAIDA Computerized Universal Test Machine with Large Capacity (Double Column) HAIDA Computer Servo Tensile Test Machine HAIDA Desktop Tensile Test Machine HAIDA Double-Column Universal Testing Machine HAIDA Electro-Hydraulic Universal Testing Machine HAIDA Extra - Height Tensile Test Machine HAIDA Tensile Test Machines HAIDA Universal Testing Machine HAIDA Universal Test Machine HAIDA Universal Test Machine with Temperature Chamber INSTRON Compression and Tension Test Instruments SADT-SINOAGE Brand Metrology and Test Equipment, please CLICK HERE. Here you will find some of these testing equipment such as concrete testers and surface roughness tester. Let us examine these test devices in some detail: SCHMIDT HAMMER / CONCRETE TESTER : This test instrument, also sometimes called a SWISS HAMMER or a REBOUND HAMMER, is a device to measure the elastic properties or strength of concrete or rock, mainly surface hardness and penetration resistance. The hammer measures the rebound of a spring-loaded mass impacting against the surface of the sample. The test hammer will hit the concrete with a predetermined energy. The hammer’s rebound depends on the hardness of the concrete and is measured by the test equipment. Taking a conversion chart as a reference, the rebound value can be used to determine the compressive strength. The Schmidt hammer is an arbitrary scale ranging from 10 to 100. Schmidt hammers come with several different energy ranges. Their energy ranges are: (i) Type L-0.735 Nm impact energy, (ii) Type N-2.207 Nm impact energy; and (iii) Type M-29.43 Nm impact energy. Local variation in the sample. To minimize local variation in the samples it is recommended to take a selection of readings and take their average value. Prior to testing, the Schmidt hammer needs to be calibrated using a calibration test anvil supplied by the manufacturer. 12 readings should be taken, dropping the highest and lowest, and then taking the average of the ten remaining readings. This method is considered an indirect measurement of the strength of the material. It provides an indication based on surface properties for comparison between samples. This test method for testing concrete is governed by ASTM C805. On the other hand, the ASTM D5873 standard describes the procedure for testing of rock. Inside of our SADT brand catalog you will find the following products: DIGITAL CONCRETE TEST HAMMER SADT Models HT-225D/HT-75D/HT-20D - The SADT Model HT-225D is an integrated digital concrete test hammer combining data processor and test hammer into a single unit. It is widely used for non destructive quality testing of concrete and building materials. From its rebound value, the compressive strength of concrete can be calculated out automatically. All test data can be stored in memory and transferred to PC by USB cable or wirelessly by Bluetooth. The models HT-225D and HT-75D have measuring range of 10 – 70N/mm2, whereas the model HT-20D has only 1 – 25N/mm2. The impact energy of HT-225D is 0.225 Kgm and is suitable for testing ordinary building and bridge construction, the impact energy of HT-75D is 0.075 Kgm and is suitable for testing small and impact-sensitive parts of concrete and artificial brick, and finally the impact energy of HT-20D is 0.020Kgm and suitable for testing mortar or clay products. IMPACT TESTERS: In many manufacturing operations and during their service lives, many components need to be subjected to impact loading. In the impact test, the notched specimen is placed in an impact tester and broken with a swinging pendulum. There are two major types of this test: The CHARPY TEST and the IZOD TEST. For the Charpy test the specimen are supported at both ends, whereas for the Izod test they are supported only at one end like a cantilever beam. From the amount of swing of the pendulum, the energy dissipated in breaking the specimen is obtained, this energy is the impact toughness of the material. Using the impact tests, we can determine the ductile-brittle transition temperatures of materials. Materials with high impact resistance generally have high strength and ductility. These tests also reveal the sensitivity of a material’s impact toughness to surface defects, because the notch in the specimen can be considered a surface defect. TENSION TESTER : The strength-deformation characteristics of materials are determined using this test. Test specimen are prepared according to ASTM standards. Typically, solid and round specimens are tested, but flat sheets and tubular samples may also be tested using tension test. The original length of a specimen is the distance between gage marks on it and is typically 50 mm long. It is denoted as lo. Longer or shorter lengths can be used depending on the specimens and products. The original cross-sectional area is denoted as Ao. The engineering stress or also called nominal stress is then given as: Sigma = P / Ao And the engineering strain is given as: e = (l – lo) / lo In the linear elastic region, the specimen elongates proportionately to the load up to the proportional limit. Beyond this limit, even though not linearly, the specimen will continue to deform elastically up to the yield point Y. In this elastic region, the material will return to its original length if we remove the load. Hooke’s Law applies in this region and gives us the Young’s Modulus: E = Sigma / e If we increase the load and move beyond the yield point Y, the material begins to yield. In other words, the specimen begins to undergo plastic deformation. Plastic deformation means permanent deformation. The cross-sectional area of the specimen decreases permanently and uniformly. If specimen is unloaded at this point, the curve follows a straight line downward and parallel to the original line in the elastic region. If the load is further increased, the curve reaches a maximum and begins to decrease. The maximum stress point is called the tensile strength or ultimate tensile strength and is denoted as UTS. The UTS can be interpreted as the overall strength of materials. When load is greater than the UTS, necking occurs on the specimen and the elongation between gage marks is no longer uniform. In other words, the specimen becomes really thin at the location where necking occurs. During necking, the elastic stress drops. If the test is continued, the engineering stress drops further and the specimen fractures at the necking region. The stress level at fracture is the fracture stress. The strain at point of fracture is an indicator of ductility. The strain up to the UTS is referred to as uniform strain, and the elongation at fracture is referred to as total elongation. Elongation = ((lf – lo) / lo) x 100 Reduction of Area = ((Ao – Af) / Ao) x 100 Elongation and reduction of area are good indicators of ductility. COMPRESSION TESTING MACHINE ( COMPRESSION TESTER ) : In this test, the specimen is subjected to a compressive load contrary to the tensile test where the load is tensile. Generally, a solid cylindrical specimen is placed between two flat plates and compressed. Using lubricants at the contact surfaces, a phenomenon known as barreling is prevented. Engineering strain rate in compression is given by: de / dt = - v / ho, where v is die speed, ho original specimen height. True strain rate on the other hand is: de = dt = - v/ h, with h being the instantaneous specimen height. To keep the true strain rate constant during the test, a cam plastometer thru a cam action reduces the magnitude of v proportionally as the specimen height h decreases during the test. Using the compression test ductilities of materials are determined by observing cracks formed on barreled cylindrical surfaces. Another test with some differences in the die and workpiece geometries is the PLANE-STRAIN COMPRESSION TEST, which gives us the yield stress of the material in plane strain denoted widely as Y’. Yield stress of materials in plane strain can be estimated as: Y’ = 1.15 Y TORSION TEST MACHINES (TORSIONAL TESTERS) : The TORSION TEST is another widely used method for determining material properties. A tubular specimen with a reduced mid-section is used in this test. Shear stress, T is given by: T = T / 2 (Pi) (square of r) t Here, T is the applied torque, r is the mean radius and t is the thickness of the reduced section in the middle of the tube. Shear strain on the other hand is given by: ß = r Ø / l Here l is the length of the reduced section and Ø is the twist angle in radians. Within the elastic range, the shear modulus (modulus of rigidity) is expressed as: G = T / ß The relation between shear modulus and the modulus of elasticity is: G = E / 2( 1 + V ) The torsion test is applied to solid round bars at elevated temperatures to estimate the forgeability of metals. The more twists the material can withstand prior to failure, the more forgeable it is. THREE & FOUR POINT BENDING TESTERS : For brittle materials, the BEND TEST (also called FLEXURE TEST) is suitable. A rectangularly shaped specimen is supported at both ends and a load is applied vertically. The vertical force is applied at either one point as in the case of three point bending tester, or at two points as in the case of a four point test machine. The stress at fracture in bending is referred to as the modulus of rupture or transverse rupture strength. It is given as: Sigma = M c / I Here, M is the bending moment, c is one-half of the specimen depth and I is the moment of inertia of the cross-section. The magnitude of stress is the same in both three and four-point bending when all other parameters are kept constant. The four-point test is likely to result in a lower modulus of rupture as compared to the three-point test. Another superiority of the four-point bending test over the three point bending test is that its results are more consistent with less statistical scattering of values. FATIGUE TEST MACHINE: In FATIGUE TESTING, a specimen is subjected repeatedly to various states of stress. The stresses are generally a combination of tension, compression and torsion. The test process can be resembled to bending a piece of wire alternately in one direction, then the other until it fractures. The stress amplitude can be varied and is denoted as “S”. The number of cycles to cause total failure of the specimen is recorded and is denoted as “N”. Stress amplitude is the maximum stress value in tension and compression to which the specimen is subjected. One variation of the fatigue test is performed on a rotating shaft with a constant downward load. The endurance limit (fatigue limit) is defined as the max. stress value the material can withstand without fatigue failure regardless of the number of cycles. Fatigue strength of metals is related to their ultimate tensile strength UTS. COEFFICIENT OF FRICTION TESTER : This test equipment measures the ease with which two surfaces in contact are able to slide past one another. There are two different values associated with the coefficient of friction, namely the static and kinetic coefficient of friction. Static friction applies to the force necessary to initialize motion between the two surfaces and kinetic friction is the resistance to sliding once the surfaces are in relative motion. Appropriate measures need to be taken prior to testing and during testing to ensure freedom from dirt, grease and other contaminants that could adversely affect test results. ASTM D1894 is the main coefficient of friction test standard and is used by many industries with different applications and products. We are here to offer you the most suitable test equipment. If you need a custom set-up specifically designed for your application, we can modify existing equipment accordingly in order to meet your requirements and needs. HARDNESS TESTERS : Please go to our related page by clicking here THICKNESS TESTERS : Please go to our related page by clicking here SURFACE ROUGHNESS TESTERS : Please go to our related page by clicking here VIBRATION METERS : Please go to our related page by clicking here TACHOMETERS : Please go to our related page by clicking here For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор PREVIOUS PAGE

  • Fiber Optic Components, Splicing Enclosures, FTTH Node, CATV Products

    Fiber Optic Components - Splicing Enclosures - FTTH Node - Fiber Distribution Box - Optical Platform - CATV Products - Telecommunication Optics - AGS-TECH Inc. Производи со оптички влакна We supply: • Fiber optic connectors, adapters, terminators, pigtails, patchcords, connector faceplates, shelves, communication racks, fiber distribution box, splicing enclosure, FTTH node, optical platform, fiber optic taps, splitters-combiners, fixed and variable optical attenuators, optical switch, DWDM, MUX/DEMUX, EDFA, Raman amplifiers and other amplifiers, isolator, circulator, gain flattener, custom fiberoptic assembly for telecommunication systems, optical waveguide devices, CATV products • Lasers and photodetectors, PSD (Position Sensitive Detectors), quadcells • Fiber optic assemblies for industrial applications (illumination, light delivery or inspection of pipe interiors, crevices, cavities, body interiors....). • Fiberoptic assemblies for medical applications (see our site http://www.agsmedical.com for medical endoscopes and couplers). Among the products our engineers have developed is a super slim 0.6 mm diameter flexible video endoscope, and a fiber end inspection interferometer. The interferometer was developed by our engineers for in-process and final inspection in manufacturing of fiber connectors. We use special bonding and attachment techniques and materials for rigid, reliable and long life assemblies. Even under extensive environmental cycling such as high temperature/low temperature; high humidity/low humidity our assemblies remain intact and keep working. Download our catalog for passive fiber optic components Download our catalog for active fiber optic products Download our catalog for free space optical components and assemblies Private Label Medical Endoscopes and Visualization Systems (We can put your company name and logo on these) КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор ПРЕТХОДНА СТРАНИЦА

  • Tanks and Containers, USA, AGS-TECH Inc.

    AGS-TECH offers off-shelf and custom manufactured tanks and containers of various sizes. We supply wire mesh cage containers, stainless, aluminum and metal tanks and containers, IBC tanks, plastic and polymer containers, fiberglass tanks, collapsible tanks. Резервоари и контејнери We supply chemical, powder, liquid and gas storage containers and tanks made from inert polymers, stainless steel....etc. We have foldable, rolling containers, stackable containers, collapsible containers, containers with other useful functionalities finding applications in many industries such as construction, food, pharmaceuticals, chemical, petrochemical....etc. Tell us about your application and we will recommend you the most suitable container. Large volume stainless steel or other material containers are custom made to order and according to your specifications. Smaller containers are generally available off-the-shelf and also custom manufactured if your quantities justify. If quantities are significant, we can blow or rotation mould plastic containers & tanks according to your specifications. Here are the main types of our tanks and containers: Wire Mesh Cage Containers We have a variety of Wire Mesh Cage Containers in stock and can also custom manufacture them according to your specifications and needs. Our Wire Mesh Cage Containers include products such as: Stackable Cage Pallets Foldable Wire Mesh Roll Containers Foldable Wire Mesh Containers All our wire mesh cage containers are made of highest quality stainless or mild steel materials and the non-stainless versions are coated against corrosion and decay generally using zinc, hot dip or powder coating. Color of finish is generally zinc: white or yellow; or powder coated according to your request. Our wire mesh cage containers are assembled under strict quality control procedures and tested for mechanical impact, weight carrying capacity, durability, strength and long term reliability. Our wire mesh cage containers conform to international quality standards as well as US and international transportation industry standards. Wire mesh cage containers are generally used as storage boxes & bins, storage carts, transportation carts..etc. When choosing a wire mesh cage container, please consider important parameters such as loading capacity, weight of the container itself, dimensions of the grid, exterior and interior dimensions, whether you need a container that folds flat for space-saving shipping and storage, and please also consider how many of a particular container can be loaded in a 20 foot or 40 foot shipping container. The bottom line is wire mesh cage containers are long lasting, economical and environmentally friendly alternative to disposable packaging. Below are downloadable brochures of our wire mesh container products. - Wire Mesh Container Quote Design Form (please click to download, fill out and email us) Stainless and Metal Tanks & Containers Our stainless and other metal tanks and containers are ideal for storing creams and fluids. They are ideal for the cosmetics, pharmaceutical and food & beverage industries and others. They comply with European, American and international guidelines. Our stainless and metal tanks are easy to clean. These containers have steady basis and can be sanitized with no retention area. We can fit our stainless and metal tanks and containers with all types of accessories, such as integration of a washing head. Our containers are pressurizable. They are easily adaptable to your plant and workplace. Working pressures of our containers vary, so make sure to compare the specifications to your needs. Our aluminum containers and tanks are also very popular in the industry. Some models are mobile with wheels, others are stackable. We have powder, granules and pellets storage tanks that are UN approved for transportation of hazardous products. We are capable to custom design and fabricate stainless and metal tanks according to your needs and specifications. Inner and outer dimensions, wall thicknesses of our stainless and metal tanks & containers can be varied according to your requirements. Stainless and Aluminum Tanks & Containers Stackable Tanks and Containers Wheeled Tanks and Containers IBC & GRV Tanks Powder, Granules and Pellets Storage Tanks Custom Designed and Fabricated Tanks and Containers Please click links below to download our brochures for Stainless and Metal Tanks & Containers: IBC Tanks and Containers Plastic and Polymer Tanks & Containers AGS-TECH supplies tanks & containers from a vast variety of plastic and polymer materials. We encourage you to contact us with your request and specify the following so we can quote you the most appropriate product. - Application - Material grade - Dimensions - Finish - Packaging requirements - Quantity For example FDA approved food grade plastic materials are important for some containers storing beverages, grains, fruit juice....etc. On the other hand, if you need plastic and polymer tanks and containers to store chemicals or pharmaceuticals, the inertness of the plastic material against the content is of utmost importance. Contact us for our opinion on materials. You can also order off-shelf plastic and polymer tanks & containers from our brochures below. Please click on the links below to download our brochures for plastic and polymer tanks and containers: IBC Tanks and Containers Fiberglass Tanks & Containers We offer tanks & containers made of fiberglass materials. Our fiberglass tanks and containers meet US & internationally accepted standards for storage tank construction. Fiberglass tanks & containers are fabricated with contact molded laminates conforming to ASTM 4097 and filament wound laminates conforming to ASTM 3299. Special resins used in fiberglass tanks fabrication are chosen based upon customer information regarding concentration, temperature, and corrosive behavior of the product being stored. FDA approved as well as fire retardant resins are available for special applications. We encourage you to contact us with your request and specify the following so we can quote you the most appropriate fiberglass tank and container. - Application - Material expectations & specifications - Dimensions - Finish - Packaging requirements - Quantity needed We will happily give you our opinion. You can also order off-shelf fiberglass tanks & containers from our brochures below. If none of the fiberglass tanks and containers in our off-shelf portfolio satisfies you, please let us know and we can consider custom manufacturing according to your needs. Collapsible Tanks & Containers Collapsible water tanks and containers are your best choice to store liquid in applications where plastic barrels and other containers are too small or impractical. Also when you need large amounts of water or liquid quickly without constructing a concrete or metal tank, our collapsible tanks and containers are ideal. As the name implies, collapsible tanks and containers, are collapsible, meaning that you can shrink them after use, roll and make them very compact and small in volume, easy to store and transport when empty. They are reusable. We can supply you any size and model and according to your specifications. General Features of our Collapsible Tanks and Containers: - Color: Blue, orange, grey, dark green, black,.....etc. - Material: PVC - Capacity: Generally between 200 to 30000 liters - Light weight, easy operation. - Minimum packing size, easy for transportation and storage. - No contamination of water - High strength of coated fabric, adhesion up to 60 lb/in. - High strength of the seams is assured with the high frequency melt and sealed with the same polyurethane as the tank body, so the tanks have excellent ability preventing air leakage and its very safe for water. Applications for Collapsible Tanks and Containers: · Temporary Storage · Rainwater Collection · Residential and Public Storage of Water · Defense Water Storage Applications · Water Treatment · Emergency Storage and Relief · Irrigation · Construction companies choose PVC water tanks to test bridge maximum load · Fire fighting We also accept OEM orders. Custom labeling, packaging and logo printing is available. PREVIOUS PAGE

  • Pneumatic and Hydraulic Actuators - Accumulators - AGS-TECH Inc. - NM

    Pneumatic and Hydraulic Actuators - Accumulators - AGS-TECH Inc. - NM Активатори Акумулатори AGS-TECH is a leading manufacturer and supplier of PNEUMATIC and HYDRAULIC ACTUATORS for assembly, packaging, robotics, and industrial automation. Our actuators are known for performance, flexibility, and extremely long life, and welcome the challenge of many different types of operating environments. We also supply HYDRAULIC ACCUMULATORS which are devices in which potential energy is stored in the form of a compressed gas or spring, or by a raised weight to be used to exert a force against a relatively incompressible fluid. Our fast delivery of pneumatic and hydraulic actuators and accumulators will reduce your inventory costs and keep your production schedule on track. ACTUATORS: An actuator is a type of motor responsible for moving or controlling a mechanism or system. Actuators are operated by a source of energy. Hydraulic actuators are operated by hydraulic fluid pressure, and pneumatic actuators are operated by pneumatic pressure, and convert that energy into motion. Actuators are mechanisms by which a control system acts upon an environment. The control system may be a fixed mechanical or electronic system, a software-based system, a person, or any other input. Hydraulic actuators consist of cylinder or fluid motor that uses hydraulic power to facilitate mechanical operation. The mechanical motion may give an output in terms of linear, rotary or oscillatory motion. Since liquids are nearly impossible to compress, hydraulic actuators can exert considerable forces. Hydraulic actuators may have however limited acceleration. The actuator’s hydraulic cylinder consists of a hollow cylindrical tube along which a piston can slide. In single acting hydraulic actuators the fluid pressure is applied to just one side of the piston. The piston can move in only one direction, and a spring is generally used to give the piston a return stroke. Double acting actuators are used when pressure is applied on each side of the piston; any difference in pressure between the two sides of the piston moves the piston to one side or the other. Pneumatic actuators convert energy formed by vacuum or compressed air at high pressure into either linear or rotary motion. Pneumatic actuators enable large forces to be produced from relatively small pressure changes. These forces are often used with valves to move diaphragms to affect the flow of liquid through the valve. Pneumatic energy is desirable because it can respond quickly in starting and stopping as the power source does not need to be stored in reserve for operation. Industrial applications of actuators include automation, logic and sequence control, holding fixtures, and high-power motion control. Automotive applications of actuators on the other hand include power steering, power brakes, hydraulic brakes, and ventilation controls. Aerospace applications of actuators include flight-control systems, steering-control systems, air conditioning, and brake-control systems. COMPARING PNEUMATIC and HYDRAULIC ACTUATORS: Pneumatic linear actuators consist of a piston inside a hollow cylinder. Pressure from an external compressor or manual pump moves the piston inside the cylinder. As pressure is increased, the actuator’s cylinder moves along the axis of the piston, creating a linear force. The piston returns to its original position by either a spring-back force or fluid being supplied to the other side of the piston. Hydraulic linear actuators function similar to pneumatic actuators, but an incompressible liquid from a pump rather than pressurized air moves the cylinder. The benefits of pneumatic actuators come from their simplicity. The majority of pneumatic aluminum actuators have a maximum pressure rating of 150 psi with bore sizes ranging from 1/2 to 8 in., which can be converted into approximately 30 to 7,500 lb. of force. Steel pneumatic actuators on the other hand have a maximum pressure rating of 250 psi with bore sizes ranging from 1/2 to 14 in., and generate forces ranging from 50 to 38,465 lb. Pneumatic actuators generate precise linear motion by providing accuracies such as 0.1 inches and repeatabilities within .001 inches. Typical applications of pneumatic actuators are areas of extreme temperatures such as -40 F to 250 F. Using air, pneumatic actuators avoid using hazardous materials. Pneumatic actuators meet explosion protection and machine safety requirements because they create no magnetic interference due to their lack of motors. The cost of pneumatic actuators is low compared to hydraulic actuators. Pneumatic actuators are also lightweight, require minimal maintenance, and have durable components. On the other hand there are disadvantages of pneumatic actuators: Pressure losses and air’s compressibility make pneumatics less efficient than other linear-motion methods. Operations at lower pressures will have lower forces and slower speeds. A compressor must run continuously and apply pressure even if nothing is moving. To be efficient, pneumatic actuators must be sized for a specific job and cannot be used for other applications. Accurate control and efficiency requires proportional regulators and valves, which is costly and complex. Even though the air is easily available, it can be contaminated by oil or lubrication, leading to downtime and maintenance. Compressed air is a consumable that needs to be purchased. Hydraulic actuators on the other hand are rugged and suited for high-force applications. They can produce forces 25 times greater than pneumatic actuators of equal size and operate with pressures of up to 4,000 psi. Hydraulic motors have high horsepower-to-weight ratios by 1 to 2 hp/lb greater than a pneumatic motor. Hydraulic actuators can hold force and torque constant without the pump supplying more fluid or pressure, because fluids are incompressible. Hydraulic actuators can have their pumps and motors located a considerable distance away with still minimal power losses. However hydraulics will leak fluid and result in less efficiency. Hydraulic fluid leaks lead to cleanliness problems and potential damage to surrounding components and areas. Hydraulic actuators require many companion parts, such as fluid reservoirs, motors, pumps, release valves, and heat exchangers, noise-reduction equipment. As a result hydraulic linear motion systems are large and difficult to accommodate. ACCUMULATORS: These are used in fluid power systems to accumulate energy and to smooth out pulsations. Hydraulic system that utilize accumulators can use smaller fluid pumps because accumulators store energy from the pump during low demand periods. This energy is available for instantaneous use, released upon demand at a rate many times greater than could be supplied by the pump alone. Accumulators can also act as surge or pulsation absorbers by cushioning hydraulic hammers, reducing shocks caused by rapid operation or sudden starting and stopping of power cylinders in a hydraulic circuit. There are four major types of accumulators: 1.) The weight loaded piston type accumulators, 2.) Diaphragm type accumulators, 3.) Spring type accumulators and the 4.) Hydropneumatic piston type accumulators. The weight loaded type is much larger and heavier for its capacity than modern piston and bladder types. Both the weight loaded type, and mechanical spring type are very seldom used today. The hydro-pneumatic type accumulators use a gas as a spring cushion in conjunction with a hydraulic fluid, the gas and fluid being separated by a thin diaphragm or a piston. Accumulators have the following functions: -Energy Storage -Absorbing Pulsations -Cushioning Operating Shocks -Supplementing Pump Delivery -Maintaining Pressure -Acting as Dispensers Hydro-pneumatic accumulators incorporate a gas in conjunction with a hydraulic fluid. The fluid has little dynamic power storage capability. However, the relative incompressibility of a hydraulic fluid makes it ideal for fluid power systems and provides quick response to power demand. The gas, on the other hand, a partner to the hydraulic fluid in the accumulator, can be compressed to high pressures and low volumes. Potential energy is stored in the compressed gas to be released when needed. In the piston type accumulators the energy in the compressed gas exerts pressure against the piston separating the gas and the hydraulic fluid. The piston in turn forces the fluid from the cylinder into the system and to the location where useful work needs to be accomplished. In most fluid power applications, pumps are used to generate the required power to be used or stored in a hydraulic system, and pumps deliver this power in a pulsating flow. The piston pump, as commonly used for higher pressures produces pulsations detrimental to a high pressure system. An accumulator properly located in the system will substantially cushion these pressure variations. In many fluid power applications the driven member of the hydraulic system stops suddenly, creating a pressure wave which is sent back through the system. This shock wave can develop peak pressures several times greater than normal working pressures and can be the source of system failure or disturbing noise. The gas cushioning effect in an accumulator will minimize these shock waves. An example of this application is the absorption of shock caused by suddenly stopping the loading bucket on a hydraulic front end loader. An accumulator, capable of storing power, can supplement the fluid pump in delivering power to the system. The pump stores potential energy in the accumulator during idle periods of the work cycle, and the accumulator transfers this reserve power back to the system when the cycle requires emergency or peak power. This enables a system to utilize smaller pumps, resulting in cost and power savings. Pressure changes are observed in hydraulic systems when the liquid is subjected to rising or falling temperatures. Also, there may be pressure drops due to leakage of hydraulic fluids. Accumulators compensate for such pressure changes by delivering or receiving a small amount of hydraulic liquid. In the event the main power source should fail or be stopped, accumulators would act as auxiliary power sources, maintaining pressure in the system. Lastly, accumulators mcan be used to dispense fluids under pressure, such as lubricating oils. Please click on highlighted text below to download our product brochures for actuators and accumulators: - Pneumatic Cylinders - YC Series Hydraulic Cyclinder - Accumulators from AGS-TECH Inc КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор ПРЕТХОДНА СТРАНИЦА

  • Customized Optomechanical Assemblies | agstech

    Optomechanical Components & Assemblies, Beam Expander, Interferometers, Polarizers, Prism and Cube Assembly, Medical & Industrial Video Coupler, Optic Mounts Прилагодени оптомеханички склопови AGS-TECH is a supplier of: • Custom optomechanical assemblies like beam expander, beamsplitter, interferometry, etalon, filter, isolator, polarizer, prism and cube assembly, optical mounts, telescope, binocular, metallurgical microscope, digital camera adapters for microscope and telescope, medical and industrial video couplers, special custom designed illumination systems. Among the optomechanical products our engineers have developed are: - A portable metallurgical microscope which can be set as upright or inverted. - A gravure inspection microscope. - Digital camera adapters for microscope and telescope. Standard adapters fit all popular digital camera models and can be customized if required. - Medical and industrial video couplers. All medical video couplers fit over standard endoscope eyepieces and are completely sealed and soakable. - Night vision goggles - Automotive mirrors Automotive Mirrors Brochure (Click on the left blue link to download) Optical Components Brochure (Click on the left blue link to download) - in this you can find our free space optical components and subassemblies we use when we design and manufacture optomechanical assembly for special applications. We combine and assemble these optical components with precision machined metal parts to build our customers optomechanical products. We use special bonding and attachment techniques and materials for rigid, reliable and long life assembly. In some cases we deploy ''optical contacting'' technique where we bring extremely flat and clean surfaces together and join them without using any glues or epoxies. Our optomechanical assemblies are sometimes passively assembled and sometimes active assembly takes place where we use lasers and detectors to make sure the parts are properly aligned prior to fixing them in place. Even under extensive environmental cycling in special chambers such as high temperature/low temperature; high humidity/low humidity chambers, our assemblies remain intact and keep working. All our raw materials for optomechanical assembly are procured from World famous sources such as Corning and Schott. Private Label Medical Endoscopes and Visualization Systems (We can put your company name and logo on these) КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор ПРЕТХОДНА СТРАНИЦА

  • Thickness Gauges, Ultrasonic Flaw Detector, Nondestructive Measurement

    Thickness Gauges - Ultrasonic - Flaw Detector - Nondestructive Measurement of Thickness & Flaws from AGS-TECH Inc. - USA Мерачи и детектори за дебелина и недостатоци AGS-TECH Inc. offers ULTRASONIC FLAW DETECTORS and a number of different THICKNESS GAUGES with different principles of operation. One of the popular types are the ULTRASONIC THICKNESS GAUGES ( also referred to as UTM ) which are measuring instruments for the NON-DESTRUCTIVE TESTING & investigation of a material's thickness using ultrasonic waves. Another type is HALL EFFECT THICKNESS GAUGE ( also referred to as MAGNETIC BOTTLE THICKNESS GAUGE ). The Hall Effect thickness gauges offer the advantage of accuracy not being affected by the shape of samples. A third common type of NON-DESTRUCTIVE TESTING ( NDT ) instruments are EDDY CURRENT THICKNESS GAUGES. Eddy-current-type thickness gauges are electronic instruments that measure variations in impedance of an eddy-current inducing coil caused by coating thickness variations. They can only be used if the electrical conductivity of the coating differs significantly from that of the substrate. Yet a classical type of instruments are the DIGITAL THICKNESS GAUGES. They come in a variety of forms and capabilities. Most of them are relatively inexpensive instruments that rely on contacting two opposing surfaces of the specimen to measure thickness. Some of the brand name thickness gauges and ultrasonic flaw detectors we sell are SADT, SINOAGE and MITECH. ELCOMETER Inspection Equipment (material and corrosion thickness measurement, flaw detection instruments available) MITECH Multimode U ltrasonic T hickness G auges MT180 and MT190, please CLICK HERE MITECH P roduct C omparison T able for Flaw Detectors please click here. MITECH Ultrasonic F law D etector MODEL MFD620C please click here. Private Label Hand Tools for Every Industry (This catalog contains a few thickness gauges. We can private label these hand tools if you wish. In other words, we can put your company name, brand and label on them. This way you can promote your brand by reselling these to your customers.) SADT-SINOAGE Ultrasonic Thickness Gauges, please CLICK HERE. SADT-SINOAGE Brand Metrology and Test Equipment, please CLICK HERE. ULTRASONIC THICKNESS GAUGES : What makes ultrasonic measurements so attractive is their ability to gauge thickness without a need for accessing both sides of the test specimen. Various versions of these instruments such as ultrasonic coating thickness gauge, paint thickness gauge and digital thickness gauge are commercially available. A variety of materials including metals, ceramics, glasses and plastics can be tested. The instrument measures the amount of time it takes sound waves to traverse from the transducer through the material to the back end of the part and then the time which the reflection takes to get back to the transducer. From the time measured, the instrument calculates the thickness based on the speed of sound through the specimen. The transducer sensors are generally piezoelectric or EMAT. Thickness gauges with both a predetermined frequency as well as some with tunable frequencies are available. The tunable ones allow inspection of a wider range of materials. Typical ultrasonic thickness gauge frequencies are 5 mHz. Our thickness gauges offer the capability to save data and to output it to data logging devices. Ultrasonic thickness gauges are non-destructive testers, they do not require access to both sides of the test specimens, some models can be used on coatings and linings, accuracies less than 0.1mm can be obtained, easy to use on the field and no need for lab environment. Some disadvantages are the requirement of calibration for each material, need for good contact with the material which sometimes requires special coupling gels or petroleum jelly to be used at the device/sample contact interface. Popular application areas of portable ultrasonic thickness gauges are shipbuilding, construction industries, pipelines and pipe manufacturing, container and tank manufacturing....etc. The technicians can easily remove dirt and corrosion from the surfaces and then apply the coupling gel and press the probe against the metal to measure thickness. Hall Effect gages measure total wall thicknesses only, while ultrasonic gages are capable to measure individual layers in multilayer plastic products. In HALL EFFECT THICKNESS GAUGES the measurement accuracy will not be affected by the shape of samples. These devices are based on the theory of Hall Effect. For testing, the steel ball is placed on one side of the sample and the probe on the other side. The Hall Effect sensor on the probe measures the distance from the probe tip to the steel ball. The calculator will display the real thickness readings. As you can imagine, this non-destructive test method offers quick measurement for spot thickness on area where accurate measurement of corners, small radii, or complex shapes are required. In nondestructive testing, Hall Effect gages employ a probe containing a strong permanent magnet and a Hall semiconductor connected to a voltage measurement circuit. If a ferromagnetic target such as a steel ball of known mass is placed in the magnetic field, it bends the field, and this changes the voltage across the Hall sensor. As the target is moved away from the magnet, the magnetic field and hence the Hall voltage, change in a predictable manner. Plotting these changes, an instrument can generate a calibration curve that compares the measured Hall voltage to the distance of the target from the probe. The information entered into the instrument during the calibration allows the gage to establish a lookup table, in effect plotting a curve of voltage changes. During measurements, the gage checks the measured values against the lookup table and displays thickness on a digital screen. Users only need to key in known values during calibration and let the gage do the comparing and calculating. The calibration process is automatic. Advanced equipment versions offer display of the real time thickness readings and automatically captures the minimum thickness. Hall Effect thickness gauges are widely used in plastic packaging industry with rapid measurement ability, up to 16 times per second and accuracies of about ±1%. They can store thousands of thickness readings in memory. Resolutions of 0.01 mm or 0.001 mm (equivalent to 0.001” or 0.0001”) are possible. EDDY CURRENT TYPE THICKNESS GAUGES are electronic instruments that measure variations in impedance of an eddy-current inducing coil caused by coating thickness variations. They can only be used if the electrical conductivity of the coating differs significantly from that of the substrate. Eddy current techniques can be used for a number of dimensional measurements. The ability to make rapid measurements without the need for couplant or, in some cases even without the need for surface contact, makes eddy current techniques very useful. The type of measurements that can be made include thickness of thin metal sheet and foil, and of metallic coatings on metallic and nonmetallic substrate, cross-sectional dimensions of cylindrical tubes and rods, thickness of nonmetallic coatings on metallic substrates. One application where the eddy current technique is commonly used to measure material thickness is in the detection and characterization of corrosion damage & thinning on the skins of aircraft. Eddy current testing can be used to do spot checks or scanners can be used to inspect small areas. Eddy current inspection has an advantage over ultrasound in this application because no mechanical coupling is required to get the energy into the structure. Therefore, in multi-layered areas of the structure like lap splices, eddy current can often determine if corrosion thinning is present in buried layers. Eddy current inspection has an advantage over radiography for this application because only single sided access is required to perform the inspection. To get a piece of radiographic film on the back side of the aircraft skin might require uninstalling interior furnishings, panels, and insulation which could be very costly and damaging. Eddy current techniques are also used to measure the thickness of hot sheet, strip and foil in rolling mills. An important application of tube-wall thickness measurement is the detection and assessment of external and internal corrosion. Internal probes must be used when the external surfaces are not accessible, such as when testing pipes that are buried or supported by brackets. Success has been achieved in measuring thickness variations in ferromagnetic metal pipes with the remote field technique. Dimensions of cylindrical tubes and rods can be measured with either outer diameter coils or internal axial coils, whichever is appropriate. The relationship between change in impedance and change in diameter is fairly constant, with the exception at very low frequencies. Eddy current techniques can determine thickness changes down to about three percent of the skin thickness. It is also possible to measure the thicknesses of thin layers of metal on metallic substrates, provided the two metals have widely differing electrical conductivities. A frequency must be selected such that there is complete eddy current penetration of the layer, but not of the substrate itself. The method has also been used successfully for measuring thickness of very thin protective coatings of ferromagnetic metals (such as chromium and nickel) on non-ferromagnetic metal bases. On the other hand, the thickness of nonmetallic coatings on metal substrates can be determined simply from the effect of liftoff on impedance. This method is used for measuring the thickness of paint and plastic coatings. The coating serves as a spacer between the probe and the conductive surface. As the distance between the probe and the conductive base metal increases, the eddy current field strength decreases because less of the probe's magnetic field can interact with the base metal. Thicknesses between 0.5 and 25 µm can be measured with an accuracy between 10% for lower values and 4% for higher values. DIGITAL THICKNESS GAUGES : They rely on contacting two opposing surfaces of the specimen to measure thickness. Most digital thickness gauges are switchable from metric reading to inch reading. They are limited in their capabilities because proper contacting is needed to make accurate measurements. They are also more prone to operator error due to variations from user to user’s specimen handling differences as well as the wide differences in specimen properties such as hardness, elasticity….etc. They may be however sufficient for some applications and their prices are lower compared to the other types of thickness testers. The MITUTOYO brand is well recognized for its digital thickness gauges. Our PORTABLE ULTRASONIC THICKNESS GAUGES from SADT are: SADT Models SA40 / SA40EZ / SA50 : SA40 / SA40EZ are the miniaturized ultrasonic thickness gauges that can measure wall thickness and velocity. These intelligent gauges are designed to measure the thickness of both metallic and nonmetallic materials such as steel, aluminum, copper, brass, silver and etc. These versatile models can easily be equipped with the low & high frequency probes, high temperature probe for demanding application environments. The SA50 ultrasonic thickness meter is micro-processor controlled and is based on the ultrasonic measurement principle. It is capable of measuring the thickness and acoustic speed of ultrasound transmitted through various materials. The SA50 is designed to measure the thickness of standard metal materials and metal materials covered with coating. Download our SADT product brochure from above link to see differences in measuring range, resolution, accuracy, memory capacity, ….etc between these three models. SADT Models ST5900 / ST5900+ : These instruments are the miniaturized ultrasonic thickness gauges that can measure wall thicknesses. The ST5900 has a fixed velocity of 5900 m/s, which is used only for measuring the wall thickness of steel. On the other hand, the model ST5900+ is capable to adjust velocity between 1000~9990m/s so that it can measure the thickness of both metallic and nonmetallic materials like steel, aluminum, brass, silver,…. etc. For details on various probes please download product brochure from the above link. Our PORTABLE ULTRASONIC THICKNESS GAUGES from MITECH are: Multi-Mode Ultrasonic Thickness Gauge MITECH MT180 / MT190 : These are multi-mode ultrasonic thickness gauges based on the same operating principles as SONAR. The instrument is capable of measuring the thickness of various materials with accuracies as high as 0.1/0.01 millimeters. The multi-mode feature of the gauge allows the user to toggle between pulse-echo mode (flaw and pit detection), and echo-echo mode (filtering paint or coating thickness). Multi-mode: Pulse-Echo mode and Echo-Echo mode. The MITECH MT180 / MT190 models are capable of performing measurements on a wide range of materials, including metals, plastic, ceramics, composites, epoxies, glass and other ultrasonic wave conducting materials. Various transducer models are available for special applications such as coarse grain materials and high temperature environments. The instruments offer Probe-Zero function, Sound-Velocity-Calibration function, Two-Point Calibration function, Single Point Mode and Scan Mode. The MITECH MT180 / MT190 models are capable of seven measurement readings per second in the single point mode, and sixteen per second in the scan mode. They have coupling status indicator, option for Metric/Imperial unit selection, battery information indicator for the remaining capacity of the battery, auto sleep and auto power off function to conserve battery life, optional software to process the memory data on the PC. For details on various probes and transducers please download product brochure from the above link. ULTRASONIC FLAW DETECTORS : Modern versions are small, portable, microprocessor-based instruments suitable for plant and field use. High frequency sound waves are used to detect hidden cracks, porosity, voids, flaws and discontinuities in solids such as ceramic, plastic, metal, alloys…etc. These ultrasonic waves reflect from or transmit through such flaws in the material or product in predictable ways and produce distinctive echo patterns. Ultrasonic flaw detectors are nondestructive test instruments (NDT testing). They are popular in testing of welded structures, structural materials, manufacturing materials. The majority of ultrasonic flaw detectors operate at frequencies between 500,000 and 10,000,000 cycles per second (500 KHz to 10 MHz), far beyond the audible frequencies our ears can detect. In ultrasonic flaw detection, generally the lower limit of detection for a small flaw is one-half wavelength and anything smaller than that will be invisible to the test instrument. The expression summarizing a sound wave is: Wavelength = Speed of Sound / Frequency Sound waves in solids exhibit various modes of propagation: - A longitudinal or compression wave is characterized by particle motion in the same direction as wave propagation. In other words the waves travel as a result of compressions and rarefactions in the medium. - A shear / transverse wave exhibits particle motion perpendicular to the direction of wave propagation. - A surface or Rayleigh wave has an elliptical particle motion and travels across the surface of a material, penetrating to a depth of approximately one wavelength. Seismic waves in earthquakes are also Rayleigh waves. - A plate or Lamb wave is a complex mode of vibration observed in thin plates where material thickness is less than one wavelength and the wave fills the entire cross-section of the medium. Sound waves may be converted from one form to another. When sound travels through a material and encounters a boundary of another material, a portion of the energy will be reflected back and a portion transmitted through. The amount of energy reflected, or reflection coefficient, is related to the relative acoustic impedance of the two materials. Acoustic impedance in turn is a material property defined as density multiplied by the speed of sound in a given material. For two materials, the reflection coefficient as a percentage of incident energy pressure is: R = (Z2 - Z1) / (Z2 + Z1) R = reflection coefficient (e.g. percentage of energy reflected) Z1 = acoustic impedance of first material Z2 = acoustic impedance of second material In ultrasonic flaw detection, the reflection coefficient approaches 100% for metal / air boundaries, which can be interpreted as all of the sound energy being reflected from a crack or discontinuity in the path of the wave. This makes ultrasonic flaw detection possible. When it comes to reflection and refraction of sound waves, the situation is similar to that of light waves. Sound energy at ultrasonic frequencies is highly directional and the sound beams used for flaw detection are well defined. When sound reflects off a boundary, the angle of reflection equals the angle of incidence. A sound beam that hits a surface at perpendicular incidence will reflect straight back. Sound waves that are transmitted from one material to another bend in accordance to Snell's Law of refraction. Sound waves hitting a boundary at an angle will be bent according to the formula: Sin Ø1/Sin Ø2 = V1/V2 Ø1 = Incident angle in first material Ø2= Refracted angle in second material V1 = Velocity of sound in the first material V2 = Velocity of sound in the second material Transducers of ultrasonic flaw detectors have an active element made of a piezoelectric material. When this element is vibrated by an incoming sound wave, it generates an electrical pulse. When it is excited by a high voltage electrical pulse, it vibrates across a specific spectrum of frequencies and generates sound waves. Because sound energy at ultrasonic frequencies does not travel efficiently through gasses, a thin layer of coupling gel is used between the transducer and the test piece. Ultrasonic transducers used in flaw detection applications are: - Contact Transducers: These are used in direct contact with the test piece. They send sound energy perpendicular to the surface and are typically used for locating voids, porosity, cracks, delaminations parallel to the outside surface of a part, as well as for measuring thickness. - Angle Beam Transducers: They are used in conjunction with plastic or epoxy wedges (angle beams) to introduce shear waves or longitudinal waves into a test piece at a designated angle with respect to the surface. They are popular in weld inspection. - Delay Line Transducers: These incorporate a short plastic waveguide or delay line between the active element and the test piece. They are used to improve near surface resolution. They are suitable for high temperature testing, where the delay line protects the active element from thermal damage. - Immersion Transducers: These are designed to couple sound energy into the test piece through a water column or water bath. They are used in automated scanning applications and also in situations where a sharply focused beam is needed for improved flaw resolution. - Dual Element Transducers: These utilize separate transmitter and receiver elements in a single assembly. They are often used in applications involving rough surfaces, coarse grained materials, detection of pitting or porosity. Ultrasonic flaw detectors generate and display an ultrasonic waveform interpreted with the aid of analysis software, to locate flaws in materials and finished products. Modern devices include an ultrasonic pulse emitter & receiver, hardware and software for signal capture and analysis, a waveform display, and a data logging module. Digital signal processing is used for stability and precision. The pulse emitter & receiver section provides an excitation pulse to drive the transducer, and amplification and filtering for the returning echoes. Pulse amplitude, shape, and damping can be controlled to optimize transducer performance, and receiver gain and bandwidth can be adjusted to optimize signal-to-noise ratios. Advanced version flaw detectors capture a waveform digitally and then perform various measurement and analysis on it. A clock or timer is used to synchronize transducer pulses and provide distance calibration. Signal processing generates a waveform display that shows signal amplitude versus time on a calibrated scale, digital processing algorithms incorporate distance & amplitude correction and trigonometric calculations for angled sound paths. Alarm gates monitor signal levels at selected points in the wave train and flag echoes from flaws. Screens with multicolor displays are calibrated in units of depth or distance. Internal data loggers record full waveform and setup information associated with each test, information like echo amplitude, depth or distance readings, presence or absence of alarm conditions. Ultrasonic flaw detection is basically a comparative technique. Using appropriate reference standards along with a knowledge of sound wave propagation and generally accepted test procedures, a trained operator identifies specific echo patterns corresponding to the echo response from good parts and from representative flaws. The echo pattern from a tested material or product may then be compared to the patterns from these calibration standards to determine its condition. An echo that precedes the backwall echo implies the presence of a laminar crack or void. Analysis of the reflected echo reveals the depth, size, and shape of the structure. In some cases testing is performed in a through transmission mode. In such a case the sound energy travels between two transducers placed on opposite sides of the test piece. If a large flaw is present in the sound path, the beam will be blocked and the sound will not reach the receiver. Cracks and flaws perpendicular to the surface of a test piece, or tilted with respect to that surface, are usually invisible with straight beam test techniques because of their orientation with respect to the sound beam. In such cases which are common in welded structures, angle beam techniques are used, employing either common angle beam transducer assemblies or immersion transducers aligned so as to direct sound energy into the test piece at a selected angle. As the angle of an incident longitudinal wave with respect to a surface increases, an increasing portion of the sound energy is converted to a shear wave in the second material. If the angle is high enough, all of the energy in the second material will be in the form of shear waves. The energy transfer is more efficient at the incident angles that generate shear waves in steel and similar materials. In addition, the minimum flaw size resolution is improved through the use of shear waves, since at a given frequency, the wavelength of a shear wave is approximately 60% the wavelength of a comparable longitudinal wave. The angled sound beam is highly sensitive to cracks perpendicular to the far surface of the test piece and, after bouncing off the far side it is highly sensitive to cracks perpendicular to the coupling surface. Our ultrasonic flaw detectors from SADT / SINOAGE are: Ultrasonic Flaw Detector SADT SUD10 and SUD20 : SUD10 is a portable, microprocessor-based instrument used widely in manufacturing plants and in the field. SADT SUD10, is a smart digital device with new EL display technology. SUD10 offers almost all functions of a professional nondestructive test instrument. The SADT SUD20 model has the same functions as SUD10, but is smaller and lighter. Here are some features of these devices: -High-speed capture and very low noise -DAC, AVG, B Scan -Solid metal housing (IP65) -Automated video of test process and play -High contrast viewing of the waveform at bright, direct sunlight as well as complete darkness. Easy reading from all angles. -Powerful PC software & data can be exported to Excel -Automated calibration of transducer Zero, Offset and/or Velocity -Automated gain, peak hold and peak memory functions -Automated display of precise flaw location (Depth d, level p, distance s, amplitude, sz dB, Ø) -Automated switch for three gauges (Depth d, level p, distance s) -Ten independent setup functions, any criteria can be input freely, can work in the field without test block -Big memory of 300 A graph and 30000 thickness values -A&B Scan -RS232/USB port, communication with PC is easy -The embedded software can be updated online -Li battery, continuous working time of up to 8 hours -Display freezing function -Automatic echo degree -Angles and K-value -Lock and unlock function of system parameters -Dormancy and screen savers -Electronic clock calendar -Two gates setting and alarm indication For details download our SADT / SINOAGE brochure from the link above. Some of our ultrasonic detectors from MITECH are: MFD620C Portable Ultrasonic Flaw Detector with hi-resolution color TFT LCD display. The background color and the wave color can be selectable according to the environment. LCD brightness can be manually set. Continue working for over 8 hours with high performance lithium-ion battery module (with large capacity lithium-ion battery option), easy to be dismantled and the battery module can be charged independently outside the device. It is light and portable, easily to be taken by one hand; easy operation; superior reliability guarantees long lifetime. Range: 0~6000mm (at steel velocity); range selectable in fixed steps or continuously variable. Pulser: Spike excitation with low, middle and high choices of the pulse energy. Pulse Repetition Rate: manually adjustable from 10 to 1000 Hz. Pulse width: Adjustable in a certain range to match different probes. Damping: 200, 300, 400, 500, 600 selectable to meet different resolution and sensitivity needs. Probe working mode: Single element, dual element and through transmission; Receiver: Real-time sampling at 160MHz high speed, enough to record the defect information. Rectification: Positive half wave, negative half wave, full wave, and RF : DB Step: 0dB, 0.1 dB, 2dB, 6dB step value as well as auto-gain mode Alarm: Alarm with sound and light Memory: Total 1000 configuration channels, all instrument operating parameters plus DAC/AVG curve can be stored; stored configuration data can be easily previewed and recalled for quick, repeatable instrument setup. Total 1000 datasets store all instrument operating parameters plus A-scan. All the configuration channels and datasets can be transferred to PC via USB port. Functions: Peak Hold: Automatically searches the peak wave inside the gate and holds it on the display. Equivalent diameter calculation: find out the peak echo and calculate its equivalent diameter. Continuous Record: Record the display continuously and save it to the memory inside the instrument. Defect Localization: Localize the defect position, including the distance, the depth and its plane projection distance. Defect Sizing: Calculate the defect size Defect Evaluation: Evaluate the defect by echo envelope. DAC: Distance Amplitude Correction AVG: Distance Gain Size curve function Crack measure: Measure and calculate the crack depth B-Scan: Display the cross-section of the test block. Real-Time Clock: Real time clock for tracking the time. Communication: USB2.0 high-speed communication port For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор PREVIOUS PAGE

  • Embedded Systems, Embedded Computer, Industrial Computers, Janz Tec

    Embedded Systems - Embedded Computer - Industrial Computers - Janz Tec - Korenix - AGS-TECH Inc. - New Mexico - USA Вградени системи и компјутери An EMBEDDED SYSTEM is a computer system designed for specific control functions within a larger system, often with real-time computing constraints. It is embedded as part of a complete device often including hardware and mechanical parts. By contrast, a general-purpose computer, such as a personal computer (PC), is designed to be flexible and to meet a wide range of end-user needs. The architecture of the embedded system is oriented on a standard PC, whereby the EMBEDDED PC only consists of the components which it really needs for the relevant application. Embedded systems control many devices in common use today. Among the EMBEDDED COMPUTERS we offer you are ATOP TECHNOLOGIES, JANZ TEC, KORENIX TECHNOLOGY, DFI-ITOX and other models of products. Our embedded computers are robust and reliable systems for industrial use where downtime can be disastrous. They are energy efficient, very flexible in use, modularly constructed, compact, powerful like a complete computer, fanless and noise-free. Our embedded computers have outstanding temperature, tightness, shock and vibration resistance in harsh environments and are widely used in machine and factory construction, power and energy plants, traffic and transportation industries, medical, biomedical, bioinstrumentation, automotive industry, military, mining, navy, marine, aerospace and more. Click on blue highlighted text to download brochures and catalogs: - ATOP TECHNOLOGIES compact product brochure - ATOP Technologies Product List 2021) - DFI-ITOX model embedded systems brochure - DFI-ITOX model embedded single board computers brochure - DFI-ITOX model computer-on-board modules brochure - ICP DAS model PACs Embedded Controllers & DAQ brochure - JANZ TEC model compact product brochure - KORENIX model compact product brochure - Private Label Flash Storage for Embedded Industrial Applications (We can put your name, brand, logo on these........) To go to our industrial computer store, please CLICK HERE. Here are a few of the most popular embedded computers we offer: - Embedded PC with Intel ATOM Technology Z510/530 - Fanless Embedded PC - Embedded PC System with Freescale i.MX515 - Rugged-Embedded-PC-Systems - Modular Embedded PC Systems - HMI Systems and Fanless Industrial Display Solutions Please always remember that AGS-TECH Inc. is an established ENGINEERING INTEGRATOR and CUSTOM MANUFACTURER. Therefore, in case you need something custom manufactured, please let us know and we will offer you a turn-key solution that takes away the puzzle from your table and makes your job easier. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM Let us briefly introduce you our partners building these embedded computers: JANZ TEC AG: Janz Tec AG, has been a leading manufacturer of electronic assemblies and complete industrial computer systems since 1982. The company develops embedded computing products, industrial computers and industrial communication devices according to customer requirements. All JANZ TEC products are exclusively produced in Germany with the highest quality. With over 30 years of experience in the market, Janz Tec AG is capable of meeting individual customer requirements – this starts from concept phase and continues through the development and production of the components up to delivery. Janz Tec AG is setting the standards in the fields of Embedded Computing, Industrial PC, Industrial communication, Custom Design. Janz Tec AG's employees conceive, develop and produce embedded computer components and systems based on worldwide standards that are individually adapted to the specific customer requirements. Janz Tec embedded computers have the additional benefits of long-term availability and the highest-possible quality along with optimum price to performance ratio. Janz Tec embedded computers are always used when extremely robust and reliable systems are necessary due to the requirements made on them. The modularly-constructed and compact Janz Tec industrial computers are low-maintenance, energy-efficient and extremely flexible. The computer architecture of the Janz Tec embedded systems are oriented on a standard PC, whereby the embedded PC only consists of the components which it really needs for the relevant application. This facilitates completely independent usage in environments in which service would otherwise be extremely cost-intensive. Despite being an embedded computers, many Janz Tec products are so powerful that they can replace a complete computer. Benefits of the Janz Tec brand embedded computers are operation without fan and low maintenance. Janz Tec embedded computers are used in machine and plant construction, power & energy production, transportation & traffic, medical technology, automotive industry, production and manufacturing engineering and many other industrial applications. The processors, which are becoming more and more powerful, enable use of a Janz Tec embedded PC even when particularly complex requirements from these industries are confronted. One advantage of this is the hardware environment familiar to many developers and the availability of appropriate software development environments. Janz Tec AG has been acquiring the necessary experience in the development of its own embedded computer systems, which can be adapted to customer requirements whenever required. The focus of Janz Tec designers in the embedded computing sector is on the optimum solution appropriate to the application and the individual customer requirements. It has always been the goal of Janz Tec AG to provide high quality for the systems, solid design for long-term use, and exceptional price to performance ratios. The modern processors currently used in embedded computer systems are Freescale Intel Core i3/i5/i7, i.MX5x and Intel Atom, Intel Celeron and Core2Duo. In addition, Janz Tec industrial computers are not just fitted with standard interfaces like ethernet, USB and RS 232, but a CANbus interface is also available to the user as a feature. The Janz Tec embedded PC is frequently without a fan, and therefore can be used with CompactFlash media in most cases so that it is maintenance-free. КЛИКНЕТЕ Услуга за пронаоѓање на производи-локатор ПРЕТХОДНА СТРАНИЦА

bottom of page