top of page

Search Results

164 results found with an empty search

  • Fiber Optic Components, Splicing Enclosures, FTTH Node, CATV Products

    Fiber Optic Components - Splicing Enclosures - FTTH Node - Fiber Distribution Box - Optical Platform - CATV Products - Telecommunication Optics - AGS-TECH Inc. Fiber Optic Products We supply: • Fiber optic connectors, adapters, terminators, pigtails, patchcords, connector faceplates, shelves, communication racks, fiber distribution box, splicing enclosure, FTTH node, optical platform, fiber optic taps, splitters-combiners, fixed and variable optical attenuators, optical switch, DWDM, MUX/DEMUX, EDFA, Raman amplifiers and other amplifiers, isolator, circulator, gain flattener, custom fiberoptic assembly for telecommunication systems, optical waveguide devices, CATV products • Lasers and photodetectors, PSD (Position Sensitive Detectors), quadcells • Fiber optic assemblies for industrial applications (illumination, light delivery or inspection of pipe interiors, crevices, cavities, body interiors....). • Fiberoptic assemblies for medical applications (see our site http://www.agsmedical.com for medical endoscopes and couplers). Among the products our engineers have developed is a super slim 0.6 mm diameter flexible video endoscope, and a fiber end inspection interferometer. The interferometer was developed by our engineers for in-process and final inspection in manufacturing of fiber connectors. We use special bonding and attachment techniques and materials for rigid, reliable and long life assemblies. Even under extensive environmental cycling such as high temperature/low temperature; high humidity/low humidity our assemblies remain intact and keep working. Download our catalog for passive fiber optic components Download our catalog for active fiber optic products Download our catalog for free space optical components and assemblies Private Label Medical Endoscopes and Visualization Systems (We can put your company name and logo on these) CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Optical Connectors, Adapters, Terminators, Pigtails, Patchcords, Fiber

    Optical Connectors, Adapters, Terminators, Pigtails, Patchcords, Fiber Distribution Box, AGS-TECH Inc. - USA Optical Connectors & Interconnect Products We supply: • Optical connector assembly, adapters, terminators, pigtails, patchcords, connector faceplates, shelves, communication racks, fiber distribution box, FTTH node, optical platform. We have optical connector assembly and interconnection components for telecommunication, visible light transmission for illumination, endoscope, fiberscope and more. In recent years these optical interconnect products have become commodities and you can purchase these from us for a fraction of the prices you are probably paying now. Only those who are smart to keep procurement costs down can survive in today's global economy. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Industrial Workstations, Industrial Computer, Micro Computers,AGS-TECH

    Industrial Workstations - Industrial Computer - Micro Computers - AGS-TECH Inc. - NM - USA Industrial Workstations & Micro Computers A WORKSTATION is a high-end MICROCOMPUTER designed and used for technical or scientific applications. The intention is that they are used by one person at a time, and are commonly connected to a local area network (LAN) and run multi-user operating systems. The term workstation has also been used by many to refer to a mainframe computer terminal or a PC connected to a network. In the past, workstations had offered higher performance than desktop computers, especially with respect to CPU and graphics, memory capacity and multitasking capability. Workstations are optimized for the visualization and manipulation of different types of complex data such as 3D mechanical design, engineering simulation (such as computational fluid dynamics), animation and rendering of images, mathematical plots…etc. Consoles consist at least of a high resolution display, a keyboard and a mouse, but may also offer multiple displays, graphics tablets, 3D mice (devices for manipulation and navigation of 3D objects and scenes), etc. Workstations are the first segment of the computer market to present advanced accessories and collaboration tools. Catalog for Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals To choose a suitable Industrial Workstation for your project, please go to our industrial computer store by CLICKING HERE. We offer both off-the-shelf as well as CUSTOM DESIGNED AND MANUFACTURED INDUSTRIAL WORKSTATIONS for industrial use. For mission critical applications we design and manufacture your industrial workstations according to your specific needs. We discuss your needs and requirements and provide you feedback and design proposals prior to building your computer system. We select one of a variety of rugged enclosures and determine the right computing horsepower that meets your needs. Industrial workstations can be supplied with active and passive PCI Bus backplanes that can be configured to support your ISA cards. Our spectrum covers from small 2 – 4 slot benchtop systems up to 2U, 4U or higher rackmount systems. We offer NEMA / IP RATED FULLY ENCLOSEDworkstations. Our industrial workstations outperform similar competitors systems in terms of the quality standards they meet, reliability, durability, long term use and are used in a variety of industries including the military, navy, marine, petroleum & gas, industrial processing, medical, pharmaceutical, transportation and logistics, semiconductor manufacturing. They are designed to be used in a wide variety of environmental conditions and industrial applications that require additional protection from dirt, dust, rain, sprayed water and other circumstances where corrosive materials such as salt water or caustic substances can be present. Our heavy-duty, ruggedly-built LCD computers and workstations are an ideal and dependable solution for use in poultry, fish or beef processing facilities where total wash-down with disinfectants occurs repeatedly, or in petrochemical refineries and offshore drilling platforms for oil & natural gas. Our NEMA 4X (IP66) models are gasket sealed and constructed from 316 stainless steel. Each system is engineered and assembled according to a completely sealed design using top quality 316 stainless steel for the outer enclosure and high-tech components inside each rugged PC. They come equipped with industrial grade bright TFT displays and resistive analog industrial touch-screens. Here we list some of the features of our popular industrial workstations: - Water and dust proof, corrosion resistant. Integrated with water proof keyboards - Rugged enclosed workstation, rugged motherboards - NEMA 4 (IP65) or NEMA 4X (IP66) environmental protection - Flexibility and options in mounting. Mounting types such as pedestal, bulkhead…etc. - Direct or KVM cabling to host - Powered by Intel Dual-Core or Atom processors - SATA fast access disk drive or solid state media - Windows or Linux operating systems - Expandability - Extended operational temperatures - Depending on customer preferences, input connectors can be located on the bottom, side or rear. - Models available in 15.0”, 17” & 19.0” - Superior sunlight readability - Integrated purge system for C1D1 applications as well as non-purged C1D2 designs - UL, CE, FC, RoHS, MET compliances Dowload brochure for our DESIGN PARTNERSHIP PROGRAM CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Micromanufacturing, Surface & Bulk Micromachining, Microscale, MEMS

    Micromanufacturing - Surface & Bulk Micromachining - Microscale Manufacturing - MEMS - Accelerometers - AGS-TECH Inc. Microscale Manufacturing / Micromanufacturing / Micromachining / MEMS MICROMANUFACTURING, MICROSCALE MANUFACTURING, MICROFABRICATION or MICROMACHINING refers to our processes suitable for making tiny devices and products in the micron or microns of dimensions. Sometimes the overall dimensions of a micromanufactured product may be larger, but we still use this term to refer to the principles and processes that are involved. We use the micromanufacturing approach to make the following types of devices: Microelectronic Devices: Typical examples are semiconductor chips that function based on electrical & electronic principles. Micromechanical Devices: These are products that are purely mechanical in nature such as very small gears and hinges. Microelectromechanical Devices: We use micromanufacturing techniques to combine mechanical, electrical and electronic elements at very small length scales. Most of our sensors are in this category. Microelectromechanical Systems (MEMS): These microelectromechanical devices also incorporate an integrated electrical system in one product. Our popular commercial products in this category are MEMS accelerometers, air-bag sensors and digital micromirror devices. Depending on the product to be fabricated, we deploy one of the following major micromanufacturing methods: BULK MICROMACHINING: This is a relatively older method which uses orientation-dependent etches on single-crystal silicon. The bulk micromachining approach is based on etching down into a surface, and stopping on certain crystal faces, doped regions, and etchable films to form the required structure. Typical products we are capable of micromanufacturing using bulk micromachining technique are: - Tiny cantilevers - V-groves in silicon for alignment and fixation of optical fibers. SURFACE MICROMACHINING: Unfortunately bulk micromachining is restricted to single-crystal materials, since polycrystalline materials will not machine at different rates in different directions using wet etchants. Therefore surface micromachining stands out as an alternative to bulk micromachining. A spacer or sacrificial layer such as phosphosilicate glass is deposited using CVD process onto a silicon substrate. Generally speaking, structural thin film layers of polysilicon, metal, metal alloys, dielectrics are deposited onto the spacer layer. Using dry etching techniques, the structural thin film layers are patterned and wet etching is used to remove the sacrificial layer, thereby resulting in free-standing structures such as cantilevers. Also possible is using combinations of bulk and surface micromachining techniques for turning some designs into products. Typical products suitable for micromanufacturing using a combination of the above two techniques: - Submilimetric size microlamps (in the order of 0.1 mm size) - Pressure sensors - Micropumps - Micromotors - Actuators - Micro-fluid-flow devices Sometimes, in order to obtain high vertical structures, micromanufacturing is performed on large flat structures horizontally and then the structures are rotated or folded into an upright position using techniques such as centrifuging or microassembly with probes. Yet very tall structures can be obtained in single crystal silicon using silicon fusion bonding and deep reactive ion etching. Deep Reactive Ion Etching (DRIE) micromanufacturing process is carried out on two separate wafers, then aligned and fusion bonded to produce very tall structures that would otherwise be impossible. LIGA MICROMANUFACTURING PROCESSES: The LIGA process combines X-ray lithography, electrodeposition, molding and generally involves the following steps: 1. A few hundreds of microns thick polymethylmetacrylate (PMMA) resist layer is deposited onto the primary substrate. 2. The PMMA is developed using collimated X-rays. 3. Metal is electrodeposited onto the primary substrate. 4. PMMA is stripped and a freestanding metal structure remains. 5. We use the remaining metal structure as a mould and perform injection molding of plastics. If you analyze the basic five steps above, using the LIGA micromanufacturing / micromachining techniques we can obtain: - Freestanding metal structures - Injection molded plastic structures - Using injection molded structure as a blank we can investment cast metal parts or slip-cast ceramic parts. The LIGA micromanufacturing / micromachining processes are time consuming and expensive. However LIGA micromachining produces these submicron precision molds which can be used to replicate the desired structures with distinct advantages. LIGA micromanufacturing can be used for example to fabricate very strong miniature magnets from rare-earth powders. The rare-earth powders are mixed with an epoxy binder and pressed to the PMMA mold, cured under high pressure, magnetized under strong magnetic fields and finally the PMMA is dissolved leaving behind the tiny strong rare-earth magnets which are one of the wonders of micromanufacturing / micromachining. We are also capable to develop multilevel MEMS micromanufacturing / micromachining techniques through wafer-scale diffusion bonding. Basically we can have overhanging geometries within MEMS devices, using a batch diffusion bonding and release procedure. For example we prepare two PMMA patterned and electroformed layers with the PMMA subsequently released. Next, the wafers are aligned face to face with guide pins and press fit together in a hot press. The sacrificial layer on one of the substrates is etched away which results in one of the layers bonded to the other. Other non-LIGA based micromanufacturing techniques are also available to us for the fabrication of various complex multilayer structures. SOLID FREEFORM MICROFABRICATION PROCESSES: Additive micromanufacturing is used for rapid prototyping. Complex 3D structures can be obtained by this micromachining method and no material removal takes place. Microstereolithography process uses liquid thermosetting polymers, photoinitiator and a highly focused laser source to a diameter as small as 1 micron and layer thicknesses of about 10 microns. This micromanufacturing technique is however limited to production of nonconducting polymer structures. Another micromanufacturing method, namely “instant masking” or also known as “electrochemical fabrication” or EFAB involves the production of an elastomeric mask using photolithography. The mask is then pressed against the substrate in an electrodeposition bath so that the elastomer conforms to substrate and excludes plating solution in contact areas. Areas that are not masked are electrodeposited as the mirror image of the mask. Using a sacrificial filler, complex 3D shapes are microfabricated. This “instant masking” micromanufacturing / micromachining method makes it also possible to produce overhangs, arches…etc. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff...

    Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff, Crowned Involute Ball Spline Manufacturing, Serrations, Gib-Head Key from AGS-TECH Inc. Keys & Splines & Pins Manufacturing Other miscellaneous fasteners we provide are keys, splines, pins, serrations. KEYS: A key is a piece of steel lying partly in a groove in the shaft and extending into another groove in the hub. A key is used to secure gears, pulleys, cranks, handles, and similar machine parts to shafts, so that the motion of the part is transmitted to the shaft, or the motion of the shaft to the part, without slippage. The key may also act in a safety capacity; its size can be calculated so that when overloading takes place, the key will shear or break before the part or shaft breaks or deforms. Our keys are also available with a taper on their top surfaces. For tapered keys, the keyway in the hub is tapered to accommodate the taper on the key. Some major types of keys we offer are: Square key Flat key Gib-Head Key – These keys are the same as flat or square tapered keys but with added head for ease of removal. Pratt and Whitney Key – These are rectangular keys with rounded edges. Two-thirds of these keys sit in the shaft and one-third in the hub. Woodruff Key – These keys are semicircular and fit into semicircular keyseats in the shafts and rectangular keyways in the hub. SPLINES: Splines are ridges or teeth on a drive shaft that mesh with grooves in a mating piece and transfer torque to it, maintaining the angular correspondence between them. Splines are capable of carrying heavier loads than keys, permit lateral movement of a part, parallel to the axis of the shaft, while maintaining positive rotation, and allow the attached part to be indexed or changed to another angular position. Some splines have straight-sided teeth, whereas others have curved-sided teeth. Splines with curved-sided teeth are called involute splines. Involute splines have pressure angles of 30, 37.5 or 45 degrees. Both internal and external spline versions are available. SERRATIONS are shallow involute splines with 45 degree pressure angles and are used for holding parts like plastic knobs. Major types of splines we offer are: Parallel key splines Straight-side splines – Also called parallel-side splines, they are used in many automotive and machine industry applications. Involute splines – These splines are similar in shape to involute gears but have pressure angles of 30, 37.5 or 45 degrees. Crowned splines Serrations Helical splines Ball splines PINS / PIN FASTENERS: Pin fasteners are an inexpensive and effective method of assembly when loading is primarily in shear. Pin fasteners can be separated into two groups: Semipermanent Pinsand Quick-Release Pins. Semipermanent pin fasteners require application of pressure or the aid of tools for installation or removal. Two basic types are Machine Pins and Radial Locking Pins. We offer the following machine pins: Hardened and ground dowel pins – We have standardized nominal diameters between 3 to 22 mm available and can machine custom sized dowel pins. Dowel pins can be used to hold laminated sections together, they can fasten machine parts with high alignment accuracy, lock components on shafts. Taper pins – Standard pins with 1:48 taper on the diameter. Taper pins are suitable for light-duty service of wheels and levers to shafts. Clevis pins - We have standardized nominal diameters between 5 to 25 mm available and can machine custom sized clevis pins. Clevis pins can be used on mating yokes, forks and eye members in knuckle joints. Cotter pins – Standardized nominal diameters of cotter pins range from 1 to 20 mm. Cotter pins are locking devices for other fasteners and are generally used with a castle or slotted nuts on bolts, screws, or studs. Cotter pins enable low-cost and convenient locknut assemblies. Two basic pin forms are offered as Radial Locking Pins, solid pins with grooved surfaces and hollow spring pins which are either slotted or come with spiral-wrapped configuration. We offer the following radial locking pins: Grooved straight pins – Locking is enabled by parallel, longitudinal grooves uniformly spaced around the pin surface. Hollow spring pins – These pins are compressed when driven into holes and pins exert spring pressure against the hole walls along their entire engaged length to produce locking fits Quick-release pins: Available types vary widely in head styles, types of locking and release mechanisms, and range of pin lengths. Quick-release pins have applications such as clevis-shackle pin, draw-bar hitch pin, rigid coupling pin, tubing lock pin, adjustment pin, swivel hinge pin. Our quick release pins can be grouped into one of two basic types: Push-pull pins – These pins are made with either a solid or hollow shank containing a detent assembly in the form of a locking lug, button or ball, backed up by some sort of plug, spring or resilient core. The detent member projects from the pins surface until sufficient force is applied in assembly or removal to overcome the spring action and to release the pins. Positive-locking pins - For some quick-release pins, the locking action is independent of insertion and removal forces. Positive-locking pins are suited for shear-load applications as well as for moderate tension loads. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Solar Power Modules, Rigid, Flexible Panels, Thin Film, Monocrystaline

    Solar Power Modules - Rigid - Flexible Panels - Thin Film - Monocrystalline - Polycrystalline - Solar Connector available from AGS-TECH Inc. Manufacturing and Assembly of Customized Solar Energy Systems We supply: • Solar power cells & panels, solar energy powered devices and custom assemblies for creating alternative energy. Solar power cells can be the best solution for stand-alone equipment located in remote areas by self powering your equipment or devices. The elimination of high maintenance due to battery replacement, elimination of the need for installing power cables to connect your equipment to main power lines can give a big marketing boost to your products. Think about it when you design stand alone equipment to be located in remote areas. In addition, solar power can save you money by reducing your dependence on electrical energy purchased. Remember, solar energy cells can be flexible or rigid. Promising research is ongoing on spray-on solar cells. The energy generated by solar devices is generally stored in batteries or used immediately after generation. We can supply you the solar cells, panels, solar batteries, inverters, solar energy connectors, cable assemblies, entire solar power kits for your projects. We can also help you during the design phase of your solar device. By choosing the right components, the right solar cell type and maybe using optical lenses, prisms...etc. we can maximize the amount of power generated by the solar cells. Maximizing solar power when available surfaces on your device is limited can be a challenge. We have the right expertise and optical design tools to achieve this. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM Make sure to download our comprehensive electric & electronic components catalog for off-shelf products by CLICKING HERE . This catalogue does have products such as solar connectors, batteries, converters and more for your solar related projects. If you cannot find it there, contact us and we will send you information on what we have available. If you are mostly interested in our large scale domestic or utility scale renewable alternative energy products and systems including solar systems, then we invite you to visit our energy site http://www.ags-energy.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Industrial Computers, Industrial PC, Rugged Computer, Janz Tec,Korenix

    Industrial Computers - Industrial PC - Rugged Computer - Janz Tec - Korenix - AGS-TECH Inc. - New Mexico - USA Industrial PC, Industrial Computers Industrial PCs are used mostly for PROCESS CONTROL and/or DATA ACQUISITION. Sometimes, an INDUSTRIAL PC is simply used as a front-end to another control computer in a distributed processing environment. Custom software can be written for a particular application, or if available an off-the-shelf package can be used to provide a basic level of programming. Among the industrial PC brands we offer is JANZ TEC from Germany. An application may simply require the I/O such as the serial port provided by the motherboard. In some cases, expansion cards are installed in order to provide analog and digital I/O, specific machine interface, expanded communications ports,…etc., as required by the application. Industrial PCs offer features different from consumer PCs in terms of reliability, compatibility, expansion options and long-term supply. Industrial PCs are generally manufactured in lower volumes than home or office PCs. A popular category of industrial PC is the 19-INCH RACKMOUNT FORM FACTOR. Industrial PCs are typically more expensive than comparable office style computers with similar performance. SINGLE-BOARD COMPUTERS and BACKPLANES are used primarily in Industrial PC systems. However, the majority of industrial PCs are manufactured with COTS MOTHERBOARDS. Construction and Features of Industrial PCs: Virtually all Industrial PCs share an underlying design philosophy of providing a controlled environment for the installed electronics to survive the rigors of the plant floor. The electronic components themselves may be selected for their ability to withstand higher and lower operating temperatures than typical commercial components. - Heavier and rugged metal construction as compared to the typical office non-rugged computer - Enclosure form factor that includes provision for mounting into the surrounding environment (such as 19'' rack, wall mount, panel mount, etc.) - Additional cooling with air filtering - Alternative cooling methods such as using forced air, a liquid, and/or conduction - Retention and support of expansion cards - Enhanced Electromagnetic Interference (EMI) filtering and gasketing - Enhanced environmental protection such as dust proofing, water spray or immersion proofing, etc. - Sealed MIL-SPEC or Circular-MIL connectors - More robust controls and features - Higher grade power supply - Lower consumption 24 V power supply designed for use with DC UPS - Controlled access to the controls through the use of locking doors - Controlled access to the I/O through the use of access covers - Inclusion of a watchdog timer to reset the system automatically in case of a software lock-up DOWNLOAD OUR BROCHURES AND CATALOGS BY CLICKING ON THE BLUE TEXT BELOW: Catalog for Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals ATOP TECHNOLOGIES compact product brochure ATOP Technologies Product List 2021) DFI-ITOX brand Industrial Motherboards brochure DFI-ITOX brand embedded single board computers brochure ICP DAS brand PACs Embedded Controllers & DAQ brochure JANZ TEC brand compact product brochure Kiosk Systems (We private label these with your brand name and logo if you wish) Kiosk Systems Accessories Guide (We private label these with your brand name and logo if you wish) KORENIX brand compact product brochure Mobile Computers for Enterprises (We private label these with your brand name and logo if you wish) To choose a suitable Industrial PC for your project, please go to our industrial computer store by CLICKING HERE. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM Some of our popular industrial PC products from Janz Tec AG are: - FLEXIBLE 19'' RACK MOUNT SYSTEMS : The areas of operation and requirements for 19'' systems are very wide within the industry. You can choose between industrial main board technology and slot CPU technology with the use of a passive backplane. - SPACE SAVING WALL MOUNTING SYSTEMS : Our ENDEAVOUR series are flexible industrial PCs incorporating industrial components. As the standard, slot CPU boards with passive backplane technology are used. You can select the product matching your requirements, or you can find out more about individual variations of this product family by contacting us. Our Janz Tec industrial PCs can be combined with conventional industrial control systems or PLC controllers. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Laser Machining, LM, Laser Cutting, CO2 Laser Processing, Nd-YAG Cut

    Laser Machining - LM - Laser Cutting - Custom Parts Manufacturing - CO2 Laser Processing - Nd-YAG - Cutting - Boring Laser Machining & Cutting & LBM LASER CUTTING is a HIGH-ENERGY-BEAM MANUFACTURING technology that uses a laser to cut materials, and is typically used for industrial manufacturing applications. In LASER BEAM MACHINING (LBM), a laser source focuses optical energy on the surface of the workpiece. Laser cutting directs the highly focused and high-density output of a high-power laser, by computer, at the material to be cut. The targeted material then either melts, burns, vaporizes away, or is blown away by a jet of gas, in a controlled manner leaving an edge with a high-quality surface finish. Our industrial laser cutters are suitable for cutting flat-sheet material as well as structural and piping materials, metallic and nonmetallic workpieces. Generally no vacuum is required in the laser beam machining and cutting processes. There are several types of lasers used in laser cutting and manufacturing. The pulsed or continuous wave CO2 LASER is suited for cutting, boring, and engraving. The NEODYMIUM (Nd) and neodymium yttrium-aluminum-garnet (Nd-YAG) LASERS are identical in style and differ only in application. The neodymium Nd is used for boring and where high energy but low repetition is required. The Nd-YAG laser on the other hand is used where very high power is required and for boring and engraving. Both CO2 and Nd/ Nd-YAG lasers can be used for LASER WELDING. Other lasers we use in manufacturing include Nd:GLASS, RUBY and EXCIMER. In Laser Beam Machining (LBM), the following parameters are important: The reflectivity and thermal conductivity of the workpiece surface and its specific heat and latent heat of melting and evaporation. The efficiency of the Laser Beam Machining (LBM) process increases with decreasing of these parameters. The cutting depth can be expressed as: t ~ P / (v x d) This means, the cutting depth “t” is proportional to the power input P and inversely proportional to cutting speed v and laser-beam spot diameter d. The surface produced with LBM is generally rough and has a heat-affected zone. CARBONDIOXIDE (CO2) LASER CUTTING and MACHINING: The DC-excited CO2 lasers get pumped by passing a current through the gas mix whereas the RF-excited CO2 lasers use radio frequency energy for excitation. The RF method is relatively new and has become more popular. DC designs require electrodes inside the cavity, and therefore they can have electrode erosion and plating of electrode material on the optics. To the contrary, RF resonators have external electrodes and therefore they are not prone to those problems. We use CO2 lasers in industrial cutting of many materials such as mild steel, aluminum, stainless steel, titanium and plastics. YAG LASER CUTTING and MACHINING: We use YAG lasers for cutting and scribing metals and ceramics. The laser generator and external optics require cooling. Waste heat is generated and transferred by a coolant or directly to air. Water is a common coolant, usually circulated through a chiller or heat transfer system. EXCIMER LASER CUTTING and MACHINING: An excimer laser is a kind of laser with wavelengths in the ultraviolet region. The exact wavelength depends on the molecules used. For example the following wavelengths are associated with the molecules shown in parantheses: 193 nm (ArF), 248 nm (KrF), 308 nm (XeCl), 353 nm (XeF). Some excimer lasers are tunable. Excimer lasers have the attractive property that they can remove very fine layers of surface material with almost no heating or change to the remainder of the material. Therefore excimer lasers are well suited to precision micromachining of organic materials such as some polymers and plastics. GAS-ASSISTED LASER CUTTING: Sometimes we use laser beams in combination with a gas stream, like oxygen, nitrogen or argon for cutting thin sheet materials. This is done using a LASER-BEAM TORCH. For stainless steel and aluminum we use high-pressure inert-gas-assisted laser cutting using nitrogen. This results in oxide-free edges to improve weldability. These gas streams also blow away molten and vaporized material from workpiece surfaces. In a LASER MICROJET CUTTING we have a water-jet guided laser in which a pulsed laser beam is coupled into a low-pressure water jet. We use it to perform laser cutting while using the water jet to guide the laser beam, similar to an optical fiber. The advantages of laser microjet are that the water also removes debris and cools the material, it is faster than traditional ''dry'' laser cutting with higher dicing speeds, parallel kerf and omnidirectional cutting capability. We deploy different methods in cutting using lasers. Some of the methods are vaporization, melt and blow, melt blow and burn, thermal stress cracking, scribing, cold cutting and burning, stabilized laser cutting. - Vaporization cutting: The focused beam heats the surface of the material to its boiling point and creates a hole. The hole leads to a sudden increase in absorptivity and quickly deepens the hole. As the hole deepens and the material boils, the generated vapor erodes the molten walls blowing material out and further enlarging the hole. Non melting material such as wood, carbon and thermoset plastics are usually cut by this method. - Melt and blow cutting: We use high-pressure gas to blow molten material from the cutting area, decreasing the required power. The material is heated to its melting point and then a gas jet blows the molten material out of the kerf. This eliminates the need to raise the temperature of the material any further. We cut metals with this technique. - Thermal stress cracking: Brittle materials are sensitive to thermal fracture. A beam is focused on the surface causing localized heating and thermal expansion. This results in a crack that can then be guided by moving the beam. We use this technique in glass cutting. - Stealth dicing of silicon wafers: The separation of microelectronic chips from silicon wafers is performed by the stealth dicing process, using a pulsed Nd:YAG laser, the wavelength of 1064 nm is well adopted to the electronic band gap of silicon (1.11 eV or 1117 nm). This is popular in semiconductor device fabrication. - Reactive cutting: Also called flame cutting, this technique can be resembled to oxygen torch cutting but with a laser beam as the ignition source. We use this for cutting carbon steel in thicknesses over 1 mm and even very thick steel plates with little laser power. PULSED LASERS provide us a high-power burst of energy for a short period and are very effective in some laser cutting processes, such as piercing, or when very small holes or very low cutting speeds are required. If a constant laser beam was used instead, the heat could reach the point of melting the entire piece being machined. Our lasers have the ability to pulse or cut CW (Continuous Wave) under NC (numerical control) program control. We use DOUBLE PULSE LASERS emitting a series of pulse pairs to improve material removal rate and hole quality. The first pulse removes material from the surface and the second pulse prevents the ejected material from readhering to the side of the hole or cut. Tolerances and surface finish in laser cutting and machining are outstanding. Our modern laser cutters have positioning accuracies in the neighborhood of 10 micrometers and repeatabilities of 5 micrometers. Standard roughnesses Rz increase with the sheet thickness, but decreases with laser power and cutting speed. The laser cutting and machining processes are capable of achieving close tolerances, often to within 0.001 inch (0.025 mm) Part geometry and the mechanical features of our machines are optimized to achieve best tolerance capabilities. Surface finishes we can obtain from laser beam cutting may range between 0.003 mm to 0.006 mm. Generally we easily achieve holes with 0.025 mm diameter, and holes as small as 0.005 mm and hole depth-to-diameter ratios of 50 to 1 have been produced in various materials. Our simplest and most standard laser cutters will cut carbon steel metal from 0.020–0.5 inch (0.51–13 mm) in thickness and can easily be up to thirty times faster than standard sawing. Laser-beam machining is used widely for drilling and cutting of metals, nonmetals and composite materials. Advantages of laser cutting over mechanical cutting include easier workholding, cleanliness and reduced contamination of the workpiece (since there is no cutting edge as in traditional milling or turning which can become contaminated by the material or contaminate the material, i.e. bue build-up). The abrasive nature of composite materials may make them difficult to machine by conventional methods but easy by laser machining. Because the laser beam does not wear during the process, precision obtained may be better. Because laser systems have a small heat-affected zone, there is also a lesser chance of warping the material that is being cut. For some materials laser cutting can be the only option. Laser-beam cutting processes are flexible, and fiber optic beam delivery, simple fixturing, short set-up times, availability of three dimensional CNC systems make it possible for laser cutting and machining to compete successfully with other sheet metal fabrication processes such as punching. This being said, laser technology can sometimes be combined with the mechanical fabrication technologies for improved overall efficiency. Laser cutting of sheet metals has the advantages over plasma cutting of being more precise and using less energy, however, most industrial lasers cannot cut through the greater metal thickness that plasma can. Lasers operating at higher powers such as 6000 Watts are approaching plasma machines in their ability to cut through thick materials. However the capital cost of these 6000 Watt laser cutters is much higher than that of plasma cutting machines capable of cutting thick materials like steel plate. There are also disadvantages of laser cutting and machining. Laser cutting involves high power consumption. Industrial laser efficiencies may range from 5% to 15%. The power consumption and efficiency of any particular laser will vary depending on output power and operating parameters. This will depend on type of laser and how well the laser matches the work at hand. Amount of laser cutting power required for a particular task depends on the material type, thickness, process (reactive/inert) used and the desired cutting rate. The maximum production rate in laser cutting and machining is limited by a number of factors including laser power, process type (whether reactive or inert), material properties and thickness. In LASER ABLATION we remove material from a solid surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser energy and evaporates or sublimates. At high laser flux, the material is typically converted to a plasma. High power lasers clean a large spot with a single pulse. Lower power lasers use many small pulses which may be scanned across an area. In laser ablation we remove material with a pulsed laser or with a continuous wave laser beam if the laser intensity is high enough. Pulsed lasers can drill extremely small, deep holes through very hard materials. Very short laser pulses remove material so quickly that the surrounding material absorbs very little heat, therefore laser drilling can be done on delicate or heat-sensitive materials. Laser energy can be selectively absorbed by coatings, therefore CO2 and Nd:YAG pulsed lasers can be used to clean surfaces, remove paint and coating, or prepare surfaces for painting without damaging the underlying surface. We use LASER ENGRAVING and LASER MARKING to engrave or mark an object. These two techniques are in fact the most widely used applications. No inks are used, nor does it involve tool bits which contact the engraved surface and wear out which is the case with traditional mechanical engraving and marking methods. Materials specially designed for laser engraving and marking include laser-sensitive polymers and special new metal alloys. Although laser marking and engraving equipment is relatively more expensive compared to alternatives such as punches, pins, styli, etching stamps….etc., they have become more popular due to their accuracy, reproducibility, flexibility, ease of automation and on-line application in a wide variety of manufacturing environments. Finally, we use laser beams for several other manufacturing operations: - LASER WELDING - LASER HEAT TREATING: Small-scale heat treating of metals and ceramics to modify their surface mechanical and tribological properties. - LASER SURFACE TREATMENT / MODIFICATION: Lasers are used to clean surfaces, introduce functional groups, modify surfaces in an effort to improve adhesion prior to coating deposition or joining processes. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Soft Lithography - Microcontact Printing - Microtransfer Molding

    Soft Lithography - Microcontact Printing - Microtransfer Molding - Micromolding in Capillaries - AGS-TECH Inc. - NM - USA Soft Lithography SOFT LITHOGRAPHY is a term used for a number of processes for pattern transfer. A master mold is needed in all cases and is microfabricated using standard lithography methods. Using the master mold, we produce an elastomeric pattern / stamp to be used in soft lithography. Elastomers used for this purpose need to be chemically inert, have good thermal stability, strength, durability, surface properties and be hygroscopic. Silicone rubber and PDMS (Polydimethylsiloxane) are two good candidate materials. These stamps can be used many times in soft lithography. One variation of soft lithography is MICROCONTACT PRINTING. The elastomer stamp is coated with an ink and pressed against a surface. The pattern peaks contact the surface and a thin layer of about 1 monolayer of the ink is transferred. This thin film monolayer acts as the mask for selective wet etching. A second variation is MICROTRANSFER MOLDING, in which the recesses of the elastomer mold are filled with liquid polymer precursor and pushed against a surface. Once the polymer cures after microtransfer molding, we peel off the mold, leaving behind the desired pattern. Lastly a third variation is MICROMOLDING IN CAPILLARIES, where the elastomer stamp pattern consists of channels that use capillary forces to wick a liquid polymer into the stamp from its side. Basically, a small amount of the liquid polymer is placed adjacent to the capillary channels and the capillary forces pull the liquid into the channels. Excess liquid polymer is removed and polymer inside the channels is allowed to cure. The stamp mold is peeled off and the product is ready. If the channel aspect ratio is moderate and the channel dimensions allowed depend on the liquid used, good pattern replication can be assured. The liquid used in micromolding in capillaries can be thermosetting polymers, ceramic sol-gel or suspensions of solids within liquid solvents. The micromolding in capillaries technique has been used in sensor manufacturing. Soft lithography is used to construct features measured on the micrometer to nanometer scale. Soft lithography has advantages over other forms of lithography like photolithography and electron beam lithography. The advantages include the following: • Lower cost in mass production than traditional photolithography • Suitability for applications in biotechnology and plastic electronics • Suitability for applications involving large or nonplanar (nonflat) surfaces • Soft lithography offers more pattern-transferring methods than traditional lithography techniques (more ''ink'' options) • Soft lithography does not need a photo-reactive surface to create nanostructures • With soft lithography we can achieve smaller details than photolithography in laboratory settings (~30 nm vs ~100 nm). The resolution depends on the mask used and can reach values down to 6 nm. MULTILAYER SOFT LITHOGRAPHY is a fabrication process in which microscopic chambers, channels, valves and vias are molded within bonded layers of elastomers. Using multilayer soft lithography devices consisting of multiple layers may be fabricated from soft materials. The softness of these materials allows the device areas to be reduced by more than two orders of magnitude compared with silicon-based devices. The other advantages of soft lithography, such as rapid prototyping, ease of fabrication, and biocompatibility, are also valid in multilayer soft lithography. We use this technique to build active microfluidic systems with on-off valves, switching valves, and pumps entirely out of elastomers. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Lighting, Illumination, LED Assembly, Fixture, Marine Lighting, Lights

    Lighting, Illumination, LED Assembly, Lighting Fixture, Marine Lighting, Warning Lights, Panel Light, Indicator Lamps, Fiber Optic Illumination, AGS-TECH Inc. Lighting & Illumination Systems Manufacturing and Assembly As an engineering integrator, AGS-TECH can provide you custom designed and manufactured LIGHTING & ILLUMINATION SYSTEMS. We have the software tools such as ZEMAX and CODE V for optical design, optimization & simulation and the firmware to test illumination, light intensity, density, chromatic output...etc of lighting and illumination systems. More specifically we offer: • Lighting and illumination fixtures, assemblies, systems, low power energy saving LED or fluorescent based illumination assemblies according to your optical specifications, needs and requirements. • Special application lighting & illumination systems for harsh environments, such as ships, boats, chemical plants, submarine...etc. with enclosures made of salt resisting materials such as brass and bronze and special connectors. • Lighting and illumination systems based on fiber optic, fiber bunch or waveguiding devices. • Lighting and illumination systems working at visible as well as other spectral regions such as UV or IR. Some of our brochures related to lighting & illumination systems can be downloaded from below links: LED dies and chips LED Lighting Products (OEM, ODM, Private Label) (If you wish, we can put your company name, brand and logo on these products) LED lights Catalog Relight Model LED Lights Brochure Indicator Lamps and Warning Lights Additional indicator lamps with UL and CE and IP65 certification ND16100111-1150582 LED display panels MEAN WELL Standard LED Drivers Plastic case, metal case, many power levels and types available, multi-dimming function, wireless IoT solutions. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM We use software programs such as ZEMAX and CODE V for optical system design including lighting and illumination systems. We have the expertise to simulate a series of cascaded optical components and their resulting illumination distribution, beam angles...etc. Whether your application is free space optics like automotive lighting or lighting for buildings; or guided optics such as waveguides, fiber optic ....etc., we have the expertise in optical design to optimize the distribution of illumination density and save you energy, obtain the desired spectral output, diffuse lighting characterisics....etc. We have designed and manufactured products such as a motorcycle headlamps, taillights, visible wavelength prism and lens assemblies for liquid level sensors....etc. Depending on your needs and budget we can design and assemble lighting and illumination systems from off-the-shelf components as well as custom design & manufacture them. With the deepening energy crisis, households and corporations have started implementing energy saving strategies and products to their daily lives. Lighting is one of the major areas where energy consumption can be dramatically reduced. As we know, traditional filament based lightbulbs consume a lot of energy. The fluorescent lights consume significantly less and the LED (Light Emitting Diodes) consume even less, down to about only 15% of the energy classical light bulbs consume for providing the same amount of illumination. This means LEDs consume only a fraction ! LEDs of SMD type can also be assembled very economically, reliably and with improved modern look. We can attach desired quantity of LED chips on your special design lighting & illumination systems and can custom manufacture the glass housing, panels and other components for you. Besides energy conservation, the aesthetics of your lighting system can play an important role. In some applications, special materials are needed to minimize or avoid corrosion and damage to your lighting systems, such as the case on boats and ships being adversely influenced by salty seawater droplets that can corrode your equipment and result in malfunctioning or unaesthetic appearance over time. So whether you are developing a spotlight system, emergency lighting systems, automotive lighting systems, ornamental or architectural lighting systems, lighting and illumination instrument for a biolab or else, contact us for our opinion. We may very likely be able to offer you something that will enhance your project, add to the functionality, aesthetics, reliability and reduce your cost. More on our engineering and research & development capabilities can be found at our engineering site http://www.ags-engineering.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Coating Thickness Gauge, Surface Roughness Tester, Nondestructive Test

    Coating Thickness Gauge - Surface Roughness Tester - Nondestructive Testing - SADT - Mitech - AGS-TECH Inc. - NM - USA Surface Coating Test Instruments Among our test instruments for coating and surface evaluation are COATING THICKNESS METERS, SURFACE ROUGHNESS TESTERS, GLOSS METERS, COLOR READERS, COLOR DIFFERENCE METER, METALLURGICAL MICROSCOPES, INVERTED METALLOGRAPHIC MICROSCOPE. Our main focus is on NON-DESTRUCTIVE TEST METHODS. We carry high quality brands such as ELCOMETER, SADT-SINOAGE and MITECH. A large percentage of all surfaces around us are coated. Coatings serve many purposes including good appearance, protection and giving products certain desired functionality such as water repelling, enhanced friction, wear and abrasion resistance….etc. Therefore it is of vital importance to be capable to measure, test and evaluate the properties and quality of coatings and surfaces of products. Coatings can be broadly categorized into two main groups if thicknesses are taken into consideration: THICK FILM and THIN FILM COATINGS. Please click on highlighted text below to download respective catalogs. You can procure brand new, or refurbished and used surface coating test instruments from us. Simply indicate the brand name, model number and we will provide you the most competitive quote. AMETEK-LLOYD Instruments Materials Testing (does include also Peeling, Adhesion Test Instruments...etc.) ELCOMETER Inspection Equipment (many coating inspection instruments available) HAIDA Color Assessment Cabinet MI TECH Coating Thickness Gauge Model MCT200 catalog. SADT-SINOAGE Brand Metrology and Test Equipment catalog download. In this catalog you will find some of these instruments for the evaluation of surfaces and coatings. Some of the instruments and techniques used for such purposes are: COATING THICKNESS METER : Different types of coatings require different types of coating testers. A basic understanding of the various techniques is thus essential for the user to choose the right equipment. In the Magnetic Induction Method of coating thickness measurement we measure nonmagnetic coatings over ferrous substrates and magnetic coatings over nonmagnetic substrates. The probe is positioned on the sample and the linear distance between the probe tip that contacts the surface and the base substrate is measured. Inside the measurement probe is a coil that generates a changing magnetic field. When the probe is placed on the sample, the magnetic flux density of this field is altered by the thickness of a magnetic coating or the presence of a magnetic substrate. The change in magnetic inductance is measured by a secondary coil on the probe. The output of the secondary coil is transferred to a microprocessor, where it’s shown as a coating thickness measurement on the digital display. This quick test is suitable for liquid or powder coatings, platings such as chrome, zinc, cadmium or phosphate over steel or iron substrates. Coatings such as paint or powder thicker than 0.1 mm are suitable for this method. The magnetic induction method is not well suited for nickel over steel coatings because of nickel’s partial magnetic property. Phase-sensitive Eddy current method is more suitable for these coatings. Another type of coating where the magnetic induction method is prone to failure is zinc galvanized steel. The probe will read a thickness equal to the total thickness. Newer model instruments are capable of self-calibration by detecting the substrate material through the coating. This is of course very helpful when a bare substrate is not available or when the substrate material is unknown. Cheaper equipment versions require however calibration of the instrument on a bare and uncoated substrate. The Eddy Current Method of coating thickness measurement measures nonconductive coatings on nonferrous conductive substrates, nonferrous conductive coatings on nonconductive substrates and some nonferrous metal coatings on nonferrous metals. It is similar to the magnetic inductive method previously mentioned containing a coil and similar probes. The coil in the Eddy current method has the dual function of excitation and measurement. This probe coil is driven by a high-frequency oscillator to generate an alternating high-frequency field. When placed near a metallic conductor, eddy currents are generated in the conductor. Impedance change takes place in the probe coil. The distance between the probe coil and the conductive substrate material determines the amount of impedance change, which can be measured, correlated to a coating thickness and displayed in the form of a digital reading. Applications include liquid or powder coating on aluminum and nonmagnetic stainless steel, and anodize over aluminum. This method’s reliability depends on the part’s geometry and the coating’s thickness. The substrate needs to be known prior to taking readings. Eddy current probes shouldn’t be used for measuring nonmagnetic coatings over magnetic substrates such as steel and nickel over aluminum substrates. If users must measure coatings over magnetic or nonferrous conductive substrates they will be best served with a dual magnetic induction/Eddy current gage that automatically recognizes the substrate. A third method, called the Coulometric method of coating thickness measurement, is a destructive testing method that has many important functions. Measuring the duplex nickel coatings in the automotive industry is one of it major applications. In the coulometric method, the weight of an area of known size on a metallic coating is determined through localized anodic stripping of the coating. The mass-per-unit area of the coating thickness is then calculated. This measurement on the coating is made using an electrolysis cell, which is filled with an electrolyte specifically selected to strip the particular coating. A constant current runs through the test cell, and since the coating material serves as the anode, it gets deplated. The current density and the surface area are constant, and thus the coating thickness is proportional to the time it takes to strip and take off the coating. This method is very useful for measuring electrically conductive coatings on a conductive substrate. The Coulometric method can also be used for determining the coating thickness of multiple layers on a sample. For example, the thickness of nickel and copper can be measured on a part with a top coating of nickel and an intermediate copper coating on a steel substrate. Another example of a multilayer coating is chrome over nickel over copper on top of a plastic substrate. Coulometric test method is popular in electroplating plants with a small number of random samples. Yet a fourth method is the Beta Backscatter Method for measuring coating thicknesses. A beta-emitting isotope irradiates a test sample with beta particles. A beam of beta particles is directed through an aperture onto the coated component, and a proportion of these particles are backscattered as expected from the coating through the aperture to penetrate the thin window of a Geiger Muller tube. The gas in the Geiger Muller tube ionizes, causing a momentary discharge across the tube electrodes. The discharge which is in the form of a pulse is counted and translated to a coating thickness. Materials with high atomic numbers backscatter the beta particles more. For a sample with copper as a substrate and a gold coating of 40 microns thick, the beta particles are scattered by both the substrate and the coating material. If the gold coating thickness increases, the backscatter rate also increases. The change in the rate of particles scattered is therefore a measure of the coating thickness. Applications that are suitable for the beta backscatter method are those where the atomic number of the coating and substrate differ by 20 percent. These include gold, silver or tin on electronic components, coatings on machine tools, decorative platings on plumbing fixtures, vapor-deposited coatings on electronic components, ceramics and glass, organic coatings such as oil or lubricant over metals. The beta backscatter method is useful for thicker coatings and for substrate & coating combinations where magnetic induction or Eddy current methods won’t work. Changes in alloys affect the beta backscatter method, and different isotopes and multiple calibrations might be required to compensate. An example would be tin/lead over copper, or tin over phosphorous/bronze well known in printed circuit boards and contact pins, and in these cases the changes in alloys would be better measured with the more expensive X-ray fluorescence method. The X-ray fluorescence method for measuring coating thickness is a noncontact method that allows the measurement of very thin multilayer alloy coatings on small and complex parts. Parts are exposed to X-radiation. A collimator focuses the X-rays onto an exactly defined area of the test specimen. This X-radiation causes characteristic X-ray emission (i.e., fluorescence) from both the coating and the substrate materials of the test specimen. This characteristic X-ray emission is detected with an energy dispersive detector. Using the appropriate electronics, it’s possible to register only the X-ray emission from the coating material or substrate. It’s also possible to selectively detect a specific coating when intermediate layers are present. This technique is widely used on printed circuit boards, jewelry and optical components. The X-ray fluorescence is not suitable for organic coatings. The measured coating’s thickness should not exceed 0.5-0.8 mils. However, unlike the beta backscatter method, X-ray fluorescence can measure coatings with similar atomic numbers (for example nickel over copper). As previously mentioned, different alloys affect an instrument’s calibration. Analyzing base material and coating’s thickness are critical for ensuring precision readings. Todays systems and software programs reduce the need for multiple calibrations without sacrificing quality. Finally it is worth mentioning that there are gages that can operate in several of the above mentioned modes. Some have detachable probes for flexibility in use. Many of these modern instruments do offer statistical analysis capabilities for process control and minimal calibration requirements even if used on differently shaped surfaces or different materials. SURFACE ROUGHNESS TESTERS : Surface roughness is quantified by the deviations in the direction of the normal vector of a surface from its ideal form. If these deviations are large, the surface is considered rough; if they are small, the surface is considered smooth. Commercially available instruments called SURFACE PROFILOMETERS are used to measure and record surface roughness. One of the commonly used instruments features a diamond stylus traveling along a straight line over the surface. The recording instruments are able to compensate for any surface waviness and indicate only roughness. Surface roughness can be observed through a.) Interferometry and b.) Optical microscopy, scanning-electron microscopy, laser or atomic-force microscopy (AFM). Microscopy techniques are especially useful for imaging very smooth surfaces for which features cannot be captured by less sensitive instruments. Stereoscopic photographs are useful for 3D views of surfaces and can be used to measure surface roughness. 3D surface measurements can be performed by three methods. Light from an optical-interference microscope shines against a reflective surface and records the interference fringes resulting from the incident and reflected waves. Laser profilometers are used to measure surfaces through either interferometric techniques or by moving an objective lens to maintain a constant focal length over a surface. The motion of the lens is then a measure of the surface. Lastly, the third method, namely the atomic-force microscope, is used for measuring extremely smooth surfaces on the atomic scale. In other words with this equipment even atoms on the surface can be distinguished. This sophisticated and relatively expensive equipment scans areas of less than 100 micron square on specimen surfaces. GLOSS METERS, COLOR READERS, COLOR DIFFERENCE METER : A GLOSSMETERmeasures the specular reflection gloss of a surface. A measure of gloss is obtained by projecting a light beam with fixed intensity and angle onto a surface and measuring the reflected amount at an equal but opposite angle. Glossmeters are used on a variety of materials such as paint, ceramics, paper, metal and plastic product surfaces. Measuring gloss can serve companies in assuring quality of their products. Good manufacturing practices require consistency in processes and this includes consistent surface finish and appearance. Gloss measurements are carried out at a number of different geometries. This depends on the surface material. For example metals have high levels of reflection and therefore the angular dependence is less as compared to non-metals such as coatings and plastics where angular dependence is higher due to diffuse scattering and absorption. Illumination source and observation reception angles configuration allows measurement over a small range of the overall reflection angle. The measurement results of a glossmeter are related to the amount of reflected light from a black glass standard with a defined refractive index. The ratio of the reflected light to the incident light for the test specimen, compared to the ratio for the gloss standard, is recorded as gloss units (GU). Measurement angle refers to the angle between the incident and reflected light. Three measurement angles (20°, 60°, and 85°) are used for the majority of industrial coatings. The angle is selected based on the anticipated gloss range and the following actions are taken depending on the measurement: Gloss Range..........60° Value.......Action High Gloss............>70 GU..........If measurement exceeds 70 GU, change test setup to 20° to optimize measurement accuracy. Medium Gloss........10 - 70 GU Low Gloss.............<10 GU..........If measurement is less than 10 GU, change test setup to 85° to optimize measurement accuracy. Three types of instruments are available commercially: 60° single angle instruments, a double-angle type that combines 20° and 60° and a triple-angle type that combines 20°, 60° and 85°. Two additional angles are used for other materials, the angle of 45° is specified for the measurement of ceramics, films, textiles and anodized aluminum, while the measurement angle 75° is specified for paper and printed materials. A COLOR READER or also referred to as COLORIMETER is a device that measures the absorbance of particular wavelengths of light by a specific solution. Colorimeters are most commonly used to determine the concentration of a known solute in a given solution by the application of the Beer-Lambert law, which states that the concentration of a solute is proportional to the absorbance. Our portable color readers can also be used on plastic, painting, platings, textiles, printing, dye making, food such as butter, french fries, coffee, baked products and tomatoes….etc. They can be used by amateurs who don’t have professional knowledge on colors. Since there are many types of color readers, the applications are endless. In quality control they are used mainly to insure samples fall within color tolerances set by the user. To give you an example, there are handheld tomato colorimeters which use an USDA approved index to measure and grade the color of processed tomato products. Yet another example are handheld coffee colorimeters specifically designed to measure the color of whole green beans, roasted beans, and roasted coffee using industry standard measurements. Our COLOR DIFFERENCE METERS display directly color difference by E*ab, L*a*b, CIE_L*a*b, CIE_L*c*h. Standard deviation is within E*ab0.2 They work on any color and testing takes only seconds of time. METALLURGICAL MICROSCOPES and INVERTED METALLOGRAPHIC MICROSCOPE : Metallurgical microscope is usually an optical microscope, but differs from others in the method of the specimen illumination. Metals are opaque substances and therefore they must be illuminated by frontal lighting. Therefore the source of light is located within the microscope tube. Installed in the tube is a plain glass reflector. Typical magnifications of metallurgical microscopes are in the x50 – x1000 range. Bright field illumination is used for producing images with bright background and dark non-flat structure features such as pores, edges and etched grain boundaries. Dark field illumination is used for producing images with dark background and bright non-flat structure features such as pores, edges, and etched grain boundaries. Polarized light is used for viewing metals with non-cubic crystalline structure such as magnesium, alpha-titanium and zinc, responding to cross-polarized light. Polarized light is produced by a polarizer which is located before the illuminator and analyzer and placed before the eyepiece. A Nomarsky prism is used for differential interference contrast system which makes it possible to observe features not visible in bright field. INVERTED METALLOGRAPHIC MICROSCOPES have their light source and condenser on the top, above the stage pointing down, while the objectives and turret are below the stage pointing up. Inverted microscopes are useful for observing features at the bottom of a large container under more natural conditions than on a glass slide, as is the case with a conventional microscope. Inverted microscopes are used in metallurgical applications where polished samples can be placed on top of the stage and viewed from underneath using reflecting objectives and also in micromanipulation applications where space above the specimen is required for manipulator mechanisms and the microtools they hold. Here is a brief summary of some of our test instruments for the evaluation of surfaces and coatings. You can download details of these from the product catalog links provided above. Surface Roughness Tester SADT RoughScan : This is a portable, battery-powered instrument for checking surface roughness with the measured values displayed on a digital readout. The instrument is easy to use and can be used in the lab, manufacturing environments, in shops, and wherever surface roughness testing is required. SADT GT SERIES Gloss Meters : GT series gloss meters are designed and manufactured according to international standards ISO2813, ASTMD523 and DIN67530. The technical parameters conform to JJG696-2002. The GT45 gloss meter is especially designed for measuring plastic films and ceramics, small areas and curved surfaces. SADT GMS/GM60 SERIES Gloss Meters : These glossmeters are designed and manufactured according to international standards ISO2813, ISO7668, ASTM D523, ASTM D2457. The technical parameters also conform to JJG696-2002. Our GM Series gloss meters are well suited to measure painting, coating, plastic, ceramics, leather products, paper, printed materials, floor coverings…etc. It has an appealing and user friendly design, three - angle gloss data is displayed simultaneously, large memory for measurement data, latest bluetooth function and removable memory card to transmit data conveniently, special gloss software to analyze data output, low battery and memory-full indicator. Through Internal bluetooth module and USB interface, GM gloss meters can transfer data to PC or exported to printer via printing interface. Using optional SD cards memory can be extended as much as needed. Precise Color Reader SADT SC 80 : This color reader is mostly used on plastics, paintings,, platings, textiles & costumes, printed products and in the dye manufacturing industries. It is capable to perform color analysis. The 2.4” color screen and portable design offers comfortable use. Three kinds of light sources for user selection, SCI and SCE mode switch and metamerism analysis satisfy your test needs under different work conditions. Tolerance setting, auto -judge color difference values and color deviation functions make you determine the color easily even if you don’t have any professional knowledge on colors. Using professional color analysis software users can perform the color data analysis and observe color differences on the output diagrams. Optional mini printer enables users to print out the color data on site. Portable Color Difference Meter SADT SC 20 : This portable color difference meter is widely used in quality control of plastic and printing products. It is used to capture color efficiently and accurately. Easy to operate, displays color difference by E*ab, L*a*b, CIE_L*a*b, CIE_L*c*h., standard deviation within E*ab0.2, it can be connected to computer through the USB expansion interface for inspection by software. Metallurgical Microscope SADT SM500 : It is a self-contained portable metallurgical microscope ideally suited for metallographic evaluation of metals in laboratory or in situ. Portable design and unique magnetic stand, the SM500 can be attached directly against the surface of ferrous metals at any angle, flatness, curvature and surface complexity for non-destructive examination. The SADT SM500 can also be used with digital camera or CCD image processing system to download metallurgical images to PC for data transfer, analysis, storage and printout. It is basically a portable metallurgical laboratory, with on-site sample preparation, microscope, camera and no need for AC power supply in the field. Natural colors without the need for changing light by dimming the LED lighting provides the best image observed at any time. This instrument has optional accessories including additional stand for small samples, digital camera adapter with eyepiece, CCD with interface, eyepiece 5x/10x/15x/16x, objective 4x/5x/20x/25x/40x/100x, mini grinder, electrolytic polisher, a set of wheel heads, polishing cloth wheel, replica film, filter (green, blue, yellow), bulb. Portable Metallurgraphic Microscope SADT Model SM-3 : This instrument offers a special magnetic base, fixing the unit firmly on the work pieces, it is suitable for large-scale roll test and direct observation, no cutting and sampling needed, LED lighting, uniform color temperature, no heating, forward / backward and left / right moving mechanism, convenient for adjustment of the inspection point, adapter for connecting digital cameras and observing the recordings directly on PC. Optional accessories are similar to the SADT SM500 model. For details, please download product catalog from the link above. Metallurgical Microscope SADT Model XJP-6A : This metalloscope can be easily used in factories, schools, scientific research institutions for identifying and analyzing the microstructure of all kinds of metals and alloys. It is the ideal tool for testing metal materials, verifying the quality of castings and analyzing metallographic structure of the metalized materials. Inverted Metallographic Microscope SADT Model SM400 : The design makes possible inspecting grains of metallurgical samples. Easy installation at the production line and easy to carry. The SM400 is suitable for colleges and factories. An adapter for attaching digital camera to the trinocular tube is also available. This mode needs MI of the metallographic image printing with fixed sizes. We have a selection of CCD adapters for computer print-out with standard magnification and over 60% observation view. Inverted Metallographic Microscope SADT Model SD300M : Infinite focusing optics provides high resolution images. Long distance viewing objective, 20 mm wide field of view, three -plate mechanical stage accepting almost any sample size, heavy loads and allowing nondestructive microscope examination of large components. The three-plate structure provides the microscope stability and durability. The optics provides high NA and long viewing distance, delivering bright, high-resolution images. The new optical coating of SD300M is dust and damp proof. For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Automation Robotic Systems Manufacturing | agstech

    Motion Control, Positioning, Motorized Stage, Actuator, Gripper, Servo Amplifier, Hardware Software Interface Card, Translation Stages, Rotary Table,Servo Motor Automation & Robotic Systems Manufacturing and Assembly Being an engineering integrator, we can provide you AUTOMATION SYSTEMS including: • Motion control and positioning assemblies, motors, motion controller, servo amplifier, motorized stage, lift stage, goniometers, drives, actuators, grippers, direct drive air bearing spindles, hardware-software interface cards and software, custom built pick and place systems, custom built automated inspection systems assembled from translation/rotary stages and cameras, custom built robots, custom automation systems. We also supply manual positioner, manual tilt, rotary or linear stage for simpler applications. A large selection of linear and rotary tables/slides/stages that utilize brushless linear direct-drive servomotors, as well as ball screw models driven with brush or brushless rotary motors are available. Air bearing systems are also an option in automation. Depending on your automation requirements and application, we choose translation stages with suitable travel distance, speed, accuracy, resolution, repeatability, load capacity, in-position stability, reliability...etc. Again, depending on your automation application we can supply you either a purely linear or linear/rotary combination stage. We can manufacture special fixtures, tools and combine them with your motion control hardware to turn them into a complete turnkey automation solution for you. If you require also assistance with installing drivers, code writing for specially developed software with user friendly interface, we can send our experienced automation engineer to your site on a contract basis. Our engineer can directly communicate with you on a daily basis so that at the end you have a custom tailored automation system free of bugs and meeting your expectations. Goniometers: For high-accuracy angular alignment of optical components. The design utilizes direct-drive noncontact motor technology. When used with the multiplier, it provides a positioning speed of 150 degrees per second. So whether you are thinking of an automation system with a moving camera, taking snapshots of a product and analyzing the images acquired to determine a product defect, or whether you are trying to reduce manufacturing leadtimes by integrating a pick and place robot to your automated manufacturing, call us, contact us and you will be glad with the solutions we can provide you. ROBOTS and COBOTS Here are brochures of some off-shelf robots you can download. If you wish we can build you customized robots and cobots that will better fit your needs and applications. We can either redesign and modify existing robot platforms or make new designs for you. Click on blue colored text below to download catalogs: - Collaborative Robots - Customized Agricultural Robots - Customized Commercial Places Robots - Customized Health Care and Hospital Robots - Customized Warehousing Robots - Customized Robots for a Variety of Applications - Food and Beverage Delivery Robot-A302-A302D - Hospital Delivery Robot A801 - Indoor Delivery Robots A301-A301A - Indoor Delivery Robot A305 - Mobile Robot Platform A001 - Robotic Laser Welding Workstation - Robotics Product Brochure - Robotics Workstations - Robot Palletizing Workstation - Robotic Vending Machine A406 - Security Robot A602 - Selection Guide of Industrial Robot Platforms - Small Objects Transfer Robot A503 - Warehouse Logistics Robots A201-A201A - Welding Robots Brochure OTHER ALTERNATIVE ROBOTS and COBOTS No one design or product meets every customer's needs. Below are downloadable brochures for our other products. - Hikrobot Mobile Robots Catalog - Hikvision Logistic Vision Solutions AUTOMATION COMPONENTS AND SPARE PARTS Click on highlighted text to download brochures and catalogs of products you can use as accessories, spare components in building automation systems, robots and cobots: - Barcode and Fixed Mount Scanners - RFID Products - Mobile Computers - Micro Kiosks OEM Technology (We private label these with your brand name and logo if you wish) - Barcode Scanners (We private label these with your brand name and logo if you wish) - Fixed Industrial Scanners (We private label these with your brand name and logo if you wish) - Hikrobot Machine Vision Products - Hikrobot Smart Machine Vision Products - Hikrobot Machine Vision Standard Products - Kinco automation products, including HMI, stepper system, ED servo, CD servo, PLC, field bus. - Kiosk Systems (We private label these with your brand name and logo if you wish) - Kiosk Systems Accessories Guide (We private label these with your brand name and logo if you wish) - Linear Bearings, Die-Set Flange Mount Bearings, Pillow Blocks, Square Bearings and various Shafts & Slides for motion control - Mobile Computers for Enterprises (We private label these with your brand name and logo if you wish) - Motor Starter with UL and CE Certification NS2100111-1158052 - Printers for Barcode Scanners and Mobile Computers (We private label these with your brand name and logo if you wish) - Process Automation Solutions (We private label these with your brand name and logo if you wish) - RFID Readers - Scanners - Encoders - Printers (We private label these with your brand name and logo if you wish) - Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals Download brochure for our CUSTOM MACHINE AND EQUIPMENT MANUFACTURING Dowload brochure for our DESIGN PARTNERSHIP PROGRAM If you are looking for industrial computers, embedded computers, panel PC for your automation system, we invite you to visit our industrial computers store at http://www.agsindustrialcomputers.com If you would like to obtain more information about our engineering and research & development capabilities besides manufacturing capabilities, then we invite you to visit our engineering site http://www.ags-engineering.com CLICK Product Finder-Locator Service PREVIOUS PAGE

bottom of page