top of page

Search Results

164 results found with an empty search

  • Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff...

    Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff, Crowned Involute Ball Spline Manufacturing, Serrations, Gib-Head Key from AGS-TECH Inc. Keys & Splines & Pins Manufacturing Other miscellaneous fasteners we provide are keys, splines, pins, serrations. KEYS: A key is a piece of steel lying partly in a groove in the shaft and extending into another groove in the hub. A key is used to secure gears, pulleys, cranks, handles, and similar machine parts to shafts, so that the motion of the part is transmitted to the shaft, or the motion of the shaft to the part, without slippage. The key may also act in a safety capacity; its size can be calculated so that when overloading takes place, the key will shear or break before the part or shaft breaks or deforms. Our keys are also available with a taper on their top surfaces. For tapered keys, the keyway in the hub is tapered to accommodate the taper on the key. Some major types of keys we offer are: Square key Flat key Gib-Head Key – These keys are the same as flat or square tapered keys but with added head for ease of removal. Pratt and Whitney Key – These are rectangular keys with rounded edges. Two-thirds of these keys sit in the shaft and one-third in the hub. Woodruff Key – These keys are semicircular and fit into semicircular keyseats in the shafts and rectangular keyways in the hub. SPLINES: Splines are ridges or teeth on a drive shaft that mesh with grooves in a mating piece and transfer torque to it, maintaining the angular correspondence between them. Splines are capable of carrying heavier loads than keys, permit lateral movement of a part, parallel to the axis of the shaft, while maintaining positive rotation, and allow the attached part to be indexed or changed to another angular position. Some splines have straight-sided teeth, whereas others have curved-sided teeth. Splines with curved-sided teeth are called involute splines. Involute splines have pressure angles of 30, 37.5 or 45 degrees. Both internal and external spline versions are available. SERRATIONS are shallow involute splines with 45 degree pressure angles and are used for holding parts like plastic knobs. Major types of splines we offer are: Parallel key splines Straight-side splines – Also called parallel-side splines, they are used in many automotive and machine industry applications. Involute splines – These splines are similar in shape to involute gears but have pressure angles of 30, 37.5 or 45 degrees. Crowned splines Serrations Helical splines Ball splines PINS / PIN FASTENERS: Pin fasteners are an inexpensive and effective method of assembly when loading is primarily in shear. Pin fasteners can be separated into two groups: Semipermanent Pinsand Quick-Release Pins. Semipermanent pin fasteners require application of pressure or the aid of tools for installation or removal. Two basic types are Machine Pins and Radial Locking Pins. We offer the following machine pins: Hardened and ground dowel pins – We have standardized nominal diameters between 3 to 22 mm available and can machine custom sized dowel pins. Dowel pins can be used to hold laminated sections together, they can fasten machine parts with high alignment accuracy, lock components on shafts. Taper pins – Standard pins with 1:48 taper on the diameter. Taper pins are suitable for light-duty service of wheels and levers to shafts. Clevis pins - We have standardized nominal diameters between 5 to 25 mm available and can machine custom sized clevis pins. Clevis pins can be used on mating yokes, forks and eye members in knuckle joints. Cotter pins – Standardized nominal diameters of cotter pins range from 1 to 20 mm. Cotter pins are locking devices for other fasteners and are generally used with a castle or slotted nuts on bolts, screws, or studs. Cotter pins enable low-cost and convenient locknut assemblies. Two basic pin forms are offered as Radial Locking Pins, solid pins with grooved surfaces and hollow spring pins which are either slotted or come with spiral-wrapped configuration. We offer the following radial locking pins: Grooved straight pins – Locking is enabled by parallel, longitudinal grooves uniformly spaced around the pin surface. Hollow spring pins – These pins are compressed when driven into holes and pins exert spring pressure against the hole walls along their entire engaged length to produce locking fits Quick-release pins: Available types vary widely in head styles, types of locking and release mechanisms, and range of pin lengths. Quick-release pins have applications such as clevis-shackle pin, draw-bar hitch pin, rigid coupling pin, tubing lock pin, adjustment pin, swivel hinge pin. Our quick release pins can be grouped into one of two basic types: Push-pull pins – These pins are made with either a solid or hollow shank containing a detent assembly in the form of a locking lug, button or ball, backed up by some sort of plug, spring or resilient core. The detent member projects from the pins surface until sufficient force is applied in assembly or removal to overcome the spring action and to release the pins. Positive-locking pins - For some quick-release pins, the locking action is independent of insertion and removal forces. Positive-locking pins are suited for shear-load applications as well as for moderate tension loads. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Solar Power Modules, Rigid, Flexible Panels, Thin Film, Monocrystaline

    Solar Power Modules - Rigid - Flexible Panels - Thin Film - Monocrystalline - Polycrystalline - Solar Connector available from AGS-TECH Inc. Manufacturing and Assembly of Customized Solar Energy Systems We supply: • Solar power cells & panels, solar energy powered devices and custom assemblies for creating alternative energy. Solar power cells can be the best solution for stand-alone equipment located in remote areas by self powering your equipment or devices. The elimination of high maintenance due to battery replacement, elimination of the need for installing power cables to connect your equipment to main power lines can give a big marketing boost to your products. Think about it when you design stand alone equipment to be located in remote areas. In addition, solar power can save you money by reducing your dependence on electrical energy purchased. Remember, solar energy cells can be flexible or rigid. Promising research is ongoing on spray-on solar cells. The energy generated by solar devices is generally stored in batteries or used immediately after generation. We can supply you the solar cells, panels, solar batteries, inverters, solar energy connectors, cable assemblies, entire solar power kits for your projects. We can also help you during the design phase of your solar device. By choosing the right components, the right solar cell type and maybe using optical lenses, prisms...etc. we can maximize the amount of power generated by the solar cells. Maximizing solar power when available surfaces on your device is limited can be a challenge. We have the right expertise and optical design tools to achieve this. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM Make sure to download our comprehensive electric & electronic components catalog for off-shelf products by CLICKING HERE . This catalogue does have products such as solar connectors, batteries, converters and more for your solar related projects. If you cannot find it there, contact us and we will send you information on what we have available. If you are mostly interested in our large scale domestic or utility scale renewable alternative energy products and systems including solar systems, then we invite you to visit our energy site http://www.ags-energy.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Industrial Computers, Industrial PC, Rugged Computer, Janz Tec,Korenix

    Industrial Computers - Industrial PC - Rugged Computer - Janz Tec - Korenix - AGS-TECH Inc. - New Mexico - USA Industrial PC, Industrial Computers Industrial PCs are used mostly for PROCESS CONTROL and/or DATA ACQUISITION. Sometimes, an INDUSTRIAL PC is simply used as a front-end to another control computer in a distributed processing environment. Custom software can be written for a particular application, or if available an off-the-shelf package can be used to provide a basic level of programming. Among the industrial PC brands we offer is JANZ TEC from Germany. An application may simply require the I/O such as the serial port provided by the motherboard. In some cases, expansion cards are installed in order to provide analog and digital I/O, specific machine interface, expanded communications ports,…etc., as required by the application. Industrial PCs offer features different from consumer PCs in terms of reliability, compatibility, expansion options and long-term supply. Industrial PCs are generally manufactured in lower volumes than home or office PCs. A popular category of industrial PC is the 19-INCH RACKMOUNT FORM FACTOR. Industrial PCs are typically more expensive than comparable office style computers with similar performance. SINGLE-BOARD COMPUTERS and BACKPLANES are used primarily in Industrial PC systems. However, the majority of industrial PCs are manufactured with COTS MOTHERBOARDS. Construction and Features of Industrial PCs: Virtually all Industrial PCs share an underlying design philosophy of providing a controlled environment for the installed electronics to survive the rigors of the plant floor. The electronic components themselves may be selected for their ability to withstand higher and lower operating temperatures than typical commercial components. - Heavier and rugged metal construction as compared to the typical office non-rugged computer - Enclosure form factor that includes provision for mounting into the surrounding environment (such as 19'' rack, wall mount, panel mount, etc.) - Additional cooling with air filtering - Alternative cooling methods such as using forced air, a liquid, and/or conduction - Retention and support of expansion cards - Enhanced Electromagnetic Interference (EMI) filtering and gasketing - Enhanced environmental protection such as dust proofing, water spray or immersion proofing, etc. - Sealed MIL-SPEC or Circular-MIL connectors - More robust controls and features - Higher grade power supply - Lower consumption 24 V power supply designed for use with DC UPS - Controlled access to the controls through the use of locking doors - Controlled access to the I/O through the use of access covers - Inclusion of a watchdog timer to reset the system automatically in case of a software lock-up DOWNLOAD OUR BROCHURES AND CATALOGS BY CLICKING ON THE BLUE TEXT BELOW: Catalog for Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals ATOP TECHNOLOGIES compact product brochure ATOP Technologies Product List 2021) DFI-ITOX brand Industrial Motherboards brochure DFI-ITOX brand embedded single board computers brochure ICP DAS brand PACs Embedded Controllers & DAQ brochure JANZ TEC brand compact product brochure Kiosk Systems (We private label these with your brand name and logo if you wish) Kiosk Systems Accessories Guide (We private label these with your brand name and logo if you wish) KORENIX brand compact product brochure Mobile Computers for Enterprises (We private label these with your brand name and logo if you wish) To choose a suitable Industrial PC for your project, please go to our industrial computer store by CLICKING HERE. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM Some of our popular industrial PC products from Janz Tec AG are: - FLEXIBLE 19'' RACK MOUNT SYSTEMS : The areas of operation and requirements for 19'' systems are very wide within the industry. You can choose between industrial main board technology and slot CPU technology with the use of a passive backplane. - SPACE SAVING WALL MOUNTING SYSTEMS : Our ENDEAVOUR series are flexible industrial PCs incorporating industrial components. As the standard, slot CPU boards with passive backplane technology are used. You can select the product matching your requirements, or you can find out more about individual variations of this product family by contacting us. Our Janz Tec industrial PCs can be combined with conventional industrial control systems or PLC controllers. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Laser Machining, LM, Laser Cutting, CO2 Laser Processing, Nd-YAG Cut

    Laser Machining - LM - Laser Cutting - Custom Parts Manufacturing - CO2 Laser Processing - Nd-YAG - Cutting - Boring Laser Machining & Cutting & LBM LASER CUTTING is a HIGH-ENERGY-BEAM MANUFACTURING technology that uses a laser to cut materials, and is typically used for industrial manufacturing applications. In LASER BEAM MACHINING (LBM), a laser source focuses optical energy on the surface of the workpiece. Laser cutting directs the highly focused and high-density output of a high-power laser, by computer, at the material to be cut. The targeted material then either melts, burns, vaporizes away, or is blown away by a jet of gas, in a controlled manner leaving an edge with a high-quality surface finish. Our industrial laser cutters are suitable for cutting flat-sheet material as well as structural and piping materials, metallic and nonmetallic workpieces. Generally no vacuum is required in the laser beam machining and cutting processes. There are several types of lasers used in laser cutting and manufacturing. The pulsed or continuous wave CO2 LASER is suited for cutting, boring, and engraving. The NEODYMIUM (Nd) and neodymium yttrium-aluminum-garnet (Nd-YAG) LASERS are identical in style and differ only in application. The neodymium Nd is used for boring and where high energy but low repetition is required. The Nd-YAG laser on the other hand is used where very high power is required and for boring and engraving. Both CO2 and Nd/ Nd-YAG lasers can be used for LASER WELDING. Other lasers we use in manufacturing include Nd:GLASS, RUBY and EXCIMER. In Laser Beam Machining (LBM), the following parameters are important: The reflectivity and thermal conductivity of the workpiece surface and its specific heat and latent heat of melting and evaporation. The efficiency of the Laser Beam Machining (LBM) process increases with decreasing of these parameters. The cutting depth can be expressed as: t ~ P / (v x d) This means, the cutting depth “t” is proportional to the power input P and inversely proportional to cutting speed v and laser-beam spot diameter d. The surface produced with LBM is generally rough and has a heat-affected zone. CARBONDIOXIDE (CO2) LASER CUTTING and MACHINING: The DC-excited CO2 lasers get pumped by passing a current through the gas mix whereas the RF-excited CO2 lasers use radio frequency energy for excitation. The RF method is relatively new and has become more popular. DC designs require electrodes inside the cavity, and therefore they can have electrode erosion and plating of electrode material on the optics. To the contrary, RF resonators have external electrodes and therefore they are not prone to those problems. We use CO2 lasers in industrial cutting of many materials such as mild steel, aluminum, stainless steel, titanium and plastics. YAG LASER CUTTING and MACHINING: We use YAG lasers for cutting and scribing metals and ceramics. The laser generator and external optics require cooling. Waste heat is generated and transferred by a coolant or directly to air. Water is a common coolant, usually circulated through a chiller or heat transfer system. EXCIMER LASER CUTTING and MACHINING: An excimer laser is a kind of laser with wavelengths in the ultraviolet region. The exact wavelength depends on the molecules used. For example the following wavelengths are associated with the molecules shown in parantheses: 193 nm (ArF), 248 nm (KrF), 308 nm (XeCl), 353 nm (XeF). Some excimer lasers are tunable. Excimer lasers have the attractive property that they can remove very fine layers of surface material with almost no heating or change to the remainder of the material. Therefore excimer lasers are well suited to precision micromachining of organic materials such as some polymers and plastics. GAS-ASSISTED LASER CUTTING: Sometimes we use laser beams in combination with a gas stream, like oxygen, nitrogen or argon for cutting thin sheet materials. This is done using a LASER-BEAM TORCH. For stainless steel and aluminum we use high-pressure inert-gas-assisted laser cutting using nitrogen. This results in oxide-free edges to improve weldability. These gas streams also blow away molten and vaporized material from workpiece surfaces. In a LASER MICROJET CUTTING we have a water-jet guided laser in which a pulsed laser beam is coupled into a low-pressure water jet. We use it to perform laser cutting while using the water jet to guide the laser beam, similar to an optical fiber. The advantages of laser microjet are that the water also removes debris and cools the material, it is faster than traditional ''dry'' laser cutting with higher dicing speeds, parallel kerf and omnidirectional cutting capability. We deploy different methods in cutting using lasers. Some of the methods are vaporization, melt and blow, melt blow and burn, thermal stress cracking, scribing, cold cutting and burning, stabilized laser cutting. - Vaporization cutting: The focused beam heats the surface of the material to its boiling point and creates a hole. The hole leads to a sudden increase in absorptivity and quickly deepens the hole. As the hole deepens and the material boils, the generated vapor erodes the molten walls blowing material out and further enlarging the hole. Non melting material such as wood, carbon and thermoset plastics are usually cut by this method. - Melt and blow cutting: We use high-pressure gas to blow molten material from the cutting area, decreasing the required power. The material is heated to its melting point and then a gas jet blows the molten material out of the kerf. This eliminates the need to raise the temperature of the material any further. We cut metals with this technique. - Thermal stress cracking: Brittle materials are sensitive to thermal fracture. A beam is focused on the surface causing localized heating and thermal expansion. This results in a crack that can then be guided by moving the beam. We use this technique in glass cutting. - Stealth dicing of silicon wafers: The separation of microelectronic chips from silicon wafers is performed by the stealth dicing process, using a pulsed Nd:YAG laser, the wavelength of 1064 nm is well adopted to the electronic band gap of silicon (1.11 eV or 1117 nm). This is popular in semiconductor device fabrication. - Reactive cutting: Also called flame cutting, this technique can be resembled to oxygen torch cutting but with a laser beam as the ignition source. We use this for cutting carbon steel in thicknesses over 1 mm and even very thick steel plates with little laser power. PULSED LASERS provide us a high-power burst of energy for a short period and are very effective in some laser cutting processes, such as piercing, or when very small holes or very low cutting speeds are required. If a constant laser beam was used instead, the heat could reach the point of melting the entire piece being machined. Our lasers have the ability to pulse or cut CW (Continuous Wave) under NC (numerical control) program control. We use DOUBLE PULSE LASERS emitting a series of pulse pairs to improve material removal rate and hole quality. The first pulse removes material from the surface and the second pulse prevents the ejected material from readhering to the side of the hole or cut. Tolerances and surface finish in laser cutting and machining are outstanding. Our modern laser cutters have positioning accuracies in the neighborhood of 10 micrometers and repeatabilities of 5 micrometers. Standard roughnesses Rz increase with the sheet thickness, but decreases with laser power and cutting speed. The laser cutting and machining processes are capable of achieving close tolerances, often to within 0.001 inch (0.025 mm) Part geometry and the mechanical features of our machines are optimized to achieve best tolerance capabilities. Surface finishes we can obtain from laser beam cutting may range between 0.003 mm to 0.006 mm. Generally we easily achieve holes with 0.025 mm diameter, and holes as small as 0.005 mm and hole depth-to-diameter ratios of 50 to 1 have been produced in various materials. Our simplest and most standard laser cutters will cut carbon steel metal from 0.020–0.5 inch (0.51–13 mm) in thickness and can easily be up to thirty times faster than standard sawing. Laser-beam machining is used widely for drilling and cutting of metals, nonmetals and composite materials. Advantages of laser cutting over mechanical cutting include easier workholding, cleanliness and reduced contamination of the workpiece (since there is no cutting edge as in traditional milling or turning which can become contaminated by the material or contaminate the material, i.e. bue build-up). The abrasive nature of composite materials may make them difficult to machine by conventional methods but easy by laser machining. Because the laser beam does not wear during the process, precision obtained may be better. Because laser systems have a small heat-affected zone, there is also a lesser chance of warping the material that is being cut. For some materials laser cutting can be the only option. Laser-beam cutting processes are flexible, and fiber optic beam delivery, simple fixturing, short set-up times, availability of three dimensional CNC systems make it possible for laser cutting and machining to compete successfully with other sheet metal fabrication processes such as punching. This being said, laser technology can sometimes be combined with the mechanical fabrication technologies for improved overall efficiency. Laser cutting of sheet metals has the advantages over plasma cutting of being more precise and using less energy, however, most industrial lasers cannot cut through the greater metal thickness that plasma can. Lasers operating at higher powers such as 6000 Watts are approaching plasma machines in their ability to cut through thick materials. However the capital cost of these 6000 Watt laser cutters is much higher than that of plasma cutting machines capable of cutting thick materials like steel plate. There are also disadvantages of laser cutting and machining. Laser cutting involves high power consumption. Industrial laser efficiencies may range from 5% to 15%. The power consumption and efficiency of any particular laser will vary depending on output power and operating parameters. This will depend on type of laser and how well the laser matches the work at hand. Amount of laser cutting power required for a particular task depends on the material type, thickness, process (reactive/inert) used and the desired cutting rate. The maximum production rate in laser cutting and machining is limited by a number of factors including laser power, process type (whether reactive or inert), material properties and thickness. In LASER ABLATION we remove material from a solid surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser energy and evaporates or sublimates. At high laser flux, the material is typically converted to a plasma. High power lasers clean a large spot with a single pulse. Lower power lasers use many small pulses which may be scanned across an area. In laser ablation we remove material with a pulsed laser or with a continuous wave laser beam if the laser intensity is high enough. Pulsed lasers can drill extremely small, deep holes through very hard materials. Very short laser pulses remove material so quickly that the surrounding material absorbs very little heat, therefore laser drilling can be done on delicate or heat-sensitive materials. Laser energy can be selectively absorbed by coatings, therefore CO2 and Nd:YAG pulsed lasers can be used to clean surfaces, remove paint and coating, or prepare surfaces for painting without damaging the underlying surface. We use LASER ENGRAVING and LASER MARKING to engrave or mark an object. These two techniques are in fact the most widely used applications. No inks are used, nor does it involve tool bits which contact the engraved surface and wear out which is the case with traditional mechanical engraving and marking methods. Materials specially designed for laser engraving and marking include laser-sensitive polymers and special new metal alloys. Although laser marking and engraving equipment is relatively more expensive compared to alternatives such as punches, pins, styli, etching stamps….etc., they have become more popular due to their accuracy, reproducibility, flexibility, ease of automation and on-line application in a wide variety of manufacturing environments. Finally, we use laser beams for several other manufacturing operations: - LASER WELDING - LASER HEAT TREATING: Small-scale heat treating of metals and ceramics to modify their surface mechanical and tribological properties. - LASER SURFACE TREATMENT / MODIFICATION: Lasers are used to clean surfaces, introduce functional groups, modify surfaces in an effort to improve adhesion prior to coating deposition or joining processes. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Soft Lithography - Microcontact Printing - Microtransfer Molding

    Soft Lithography - Microcontact Printing - Microtransfer Molding - Micromolding in Capillaries - AGS-TECH Inc. - NM - USA Soft Lithography SOFT LITHOGRAPHY is a term used for a number of processes for pattern transfer. A master mold is needed in all cases and is microfabricated using standard lithography methods. Using the master mold, we produce an elastomeric pattern / stamp to be used in soft lithography. Elastomers used for this purpose need to be chemically inert, have good thermal stability, strength, durability, surface properties and be hygroscopic. Silicone rubber and PDMS (Polydimethylsiloxane) are two good candidate materials. These stamps can be used many times in soft lithography. One variation of soft lithography is MICROCONTACT PRINTING. The elastomer stamp is coated with an ink and pressed against a surface. The pattern peaks contact the surface and a thin layer of about 1 monolayer of the ink is transferred. This thin film monolayer acts as the mask for selective wet etching. A second variation is MICROTRANSFER MOLDING, in which the recesses of the elastomer mold are filled with liquid polymer precursor and pushed against a surface. Once the polymer cures after microtransfer molding, we peel off the mold, leaving behind the desired pattern. Lastly a third variation is MICROMOLDING IN CAPILLARIES, where the elastomer stamp pattern consists of channels that use capillary forces to wick a liquid polymer into the stamp from its side. Basically, a small amount of the liquid polymer is placed adjacent to the capillary channels and the capillary forces pull the liquid into the channels. Excess liquid polymer is removed and polymer inside the channels is allowed to cure. The stamp mold is peeled off and the product is ready. If the channel aspect ratio is moderate and the channel dimensions allowed depend on the liquid used, good pattern replication can be assured. The liquid used in micromolding in capillaries can be thermosetting polymers, ceramic sol-gel or suspensions of solids within liquid solvents. The micromolding in capillaries technique has been used in sensor manufacturing. Soft lithography is used to construct features measured on the micrometer to nanometer scale. Soft lithography has advantages over other forms of lithography like photolithography and electron beam lithography. The advantages include the following: • Lower cost in mass production than traditional photolithography • Suitability for applications in biotechnology and plastic electronics • Suitability for applications involving large or nonplanar (nonflat) surfaces • Soft lithography offers more pattern-transferring methods than traditional lithography techniques (more ''ink'' options) • Soft lithography does not need a photo-reactive surface to create nanostructures • With soft lithography we can achieve smaller details than photolithography in laboratory settings (~30 nm vs ~100 nm). The resolution depends on the mask used and can reach values down to 6 nm. MULTILAYER SOFT LITHOGRAPHY is a fabrication process in which microscopic chambers, channels, valves and vias are molded within bonded layers of elastomers. Using multilayer soft lithography devices consisting of multiple layers may be fabricated from soft materials. The softness of these materials allows the device areas to be reduced by more than two orders of magnitude compared with silicon-based devices. The other advantages of soft lithography, such as rapid prototyping, ease of fabrication, and biocompatibility, are also valid in multilayer soft lithography. We use this technique to build active microfluidic systems with on-off valves, switching valves, and pumps entirely out of elastomers. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Lighting, Illumination, LED Assembly, Fixture, Marine Lighting, Lights

    Lighting, Illumination, LED Assembly, Lighting Fixture, Marine Lighting, Warning Lights, Panel Light, Indicator Lamps, Fiber Optic Illumination, AGS-TECH Inc. Lighting & Illumination Systems Manufacturing and Assembly As an engineering integrator, AGS-TECH can provide you custom designed and manufactured LIGHTING & ILLUMINATION SYSTEMS. We have the software tools such as ZEMAX and CODE V for optical design, optimization & simulation and the firmware to test illumination, light intensity, density, chromatic output...etc of lighting and illumination systems. More specifically we offer: • Lighting and illumination fixtures, assemblies, systems, low power energy saving LED or fluorescent based illumination assemblies according to your optical specifications, needs and requirements. • Special application lighting & illumination systems for harsh environments, such as ships, boats, chemical plants, submarine...etc. with enclosures made of salt resisting materials such as brass and bronze and special connectors. • Lighting and illumination systems based on fiber optic, fiber bunch or waveguiding devices. • Lighting and illumination systems working at visible as well as other spectral regions such as UV or IR. Some of our brochures related to lighting & illumination systems can be downloaded from below links: LED dies and chips LED Lighting Products (OEM, ODM, Private Label) (If you wish, we can put your company name, brand and logo on these products) LED lights Catalog Relight Model LED Lights Brochure Indicator Lamps and Warning Lights Additional indicator lamps with UL and CE and IP65 certification ND16100111-1150582 LED display panels MEAN WELL Standard LED Drivers Plastic case, metal case, many power levels and types available, multi-dimming function, wireless IoT solutions. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM We use software programs such as ZEMAX and CODE V for optical system design including lighting and illumination systems. We have the expertise to simulate a series of cascaded optical components and their resulting illumination distribution, beam angles...etc. Whether your application is free space optics like automotive lighting or lighting for buildings; or guided optics such as waveguides, fiber optic ....etc., we have the expertise in optical design to optimize the distribution of illumination density and save you energy, obtain the desired spectral output, diffuse lighting characterisics....etc. We have designed and manufactured products such as a motorcycle headlamps, taillights, visible wavelength prism and lens assemblies for liquid level sensors....etc. Depending on your needs and budget we can design and assemble lighting and illumination systems from off-the-shelf components as well as custom design & manufacture them. With the deepening energy crisis, households and corporations have started implementing energy saving strategies and products to their daily lives. Lighting is one of the major areas where energy consumption can be dramatically reduced. As we know, traditional filament based lightbulbs consume a lot of energy. The fluorescent lights consume significantly less and the LED (Light Emitting Diodes) consume even less, down to about only 15% of the energy classical light bulbs consume for providing the same amount of illumination. This means LEDs consume only a fraction ! LEDs of SMD type can also be assembled very economically, reliably and with improved modern look. We can attach desired quantity of LED chips on your special design lighting & illumination systems and can custom manufacture the glass housing, panels and other components for you. Besides energy conservation, the aesthetics of your lighting system can play an important role. In some applications, special materials are needed to minimize or avoid corrosion and damage to your lighting systems, such as the case on boats and ships being adversely influenced by salty seawater droplets that can corrode your equipment and result in malfunctioning or unaesthetic appearance over time. So whether you are developing a spotlight system, emergency lighting systems, automotive lighting systems, ornamental or architectural lighting systems, lighting and illumination instrument for a biolab or else, contact us for our opinion. We may very likely be able to offer you something that will enhance your project, add to the functionality, aesthetics, reliability and reduce your cost. More on our engineering and research & development capabilities can be found at our engineering site http://www.ags-engineering.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Coating Thickness Gauge, Surface Roughness Tester, Nondestructive Test

    Coating Thickness Gauge - Surface Roughness Tester - Nondestructive Testing - SADT - Mitech - AGS-TECH Inc. - NM - USA Surface Coating Test Instruments Among our test instruments for coating and surface evaluation are COATING THICKNESS METERS, SURFACE ROUGHNESS TESTERS, GLOSS METERS, COLOR READERS, COLOR DIFFERENCE METER, METALLURGICAL MICROSCOPES, INVERTED METALLOGRAPHIC MICROSCOPE. Our main focus is on NON-DESTRUCTIVE TEST METHODS. We carry high quality brands such as ELCOMETER, SADT-SINOAGE and MITECH. A large percentage of all surfaces around us are coated. Coatings serve many purposes including good appearance, protection and giving products certain desired functionality such as water repelling, enhanced friction, wear and abrasion resistance….etc. Therefore it is of vital importance to be capable to measure, test and evaluate the properties and quality of coatings and surfaces of products. Coatings can be broadly categorized into two main groups if thicknesses are taken into consideration: THICK FILM and THIN FILM COATINGS. Please click on highlighted text below to download respective catalogs. You can procure brand new, or refurbished and used surface coating test instruments from us. Simply indicate the brand name, model number and we will provide you the most competitive quote. AMETEK-LLOYD Instruments Materials Testing (does include also Peeling, Adhesion Test Instruments...etc.) ELCOMETER Inspection Equipment (many coating inspection instruments available) HAIDA Color Assessment Cabinet MI TECH Coating Thickness Gauge Model MCT200 catalog. SADT-SINOAGE Brand Metrology and Test Equipment catalog download. In this catalog you will find some of these instruments for the evaluation of surfaces and coatings. Some of the instruments and techniques used for such purposes are: COATING THICKNESS METER : Different types of coatings require different types of coating testers. A basic understanding of the various techniques is thus essential for the user to choose the right equipment. In the Magnetic Induction Method of coating thickness measurement we measure nonmagnetic coatings over ferrous substrates and magnetic coatings over nonmagnetic substrates. The probe is positioned on the sample and the linear distance between the probe tip that contacts the surface and the base substrate is measured. Inside the measurement probe is a coil that generates a changing magnetic field. When the probe is placed on the sample, the magnetic flux density of this field is altered by the thickness of a magnetic coating or the presence of a magnetic substrate. The change in magnetic inductance is measured by a secondary coil on the probe. The output of the secondary coil is transferred to a microprocessor, where it’s shown as a coating thickness measurement on the digital display. This quick test is suitable for liquid or powder coatings, platings such as chrome, zinc, cadmium or phosphate over steel or iron substrates. Coatings such as paint or powder thicker than 0.1 mm are suitable for this method. The magnetic induction method is not well suited for nickel over steel coatings because of nickel’s partial magnetic property. Phase-sensitive Eddy current method is more suitable for these coatings. Another type of coating where the magnetic induction method is prone to failure is zinc galvanized steel. The probe will read a thickness equal to the total thickness. Newer model instruments are capable of self-calibration by detecting the substrate material through the coating. This is of course very helpful when a bare substrate is not available or when the substrate material is unknown. Cheaper equipment versions require however calibration of the instrument on a bare and uncoated substrate. The Eddy Current Method of coating thickness measurement measures nonconductive coatings on nonferrous conductive substrates, nonferrous conductive coatings on nonconductive substrates and some nonferrous metal coatings on nonferrous metals. It is similar to the magnetic inductive method previously mentioned containing a coil and similar probes. The coil in the Eddy current method has the dual function of excitation and measurement. This probe coil is driven by a high-frequency oscillator to generate an alternating high-frequency field. When placed near a metallic conductor, eddy currents are generated in the conductor. Impedance change takes place in the probe coil. The distance between the probe coil and the conductive substrate material determines the amount of impedance change, which can be measured, correlated to a coating thickness and displayed in the form of a digital reading. Applications include liquid or powder coating on aluminum and nonmagnetic stainless steel, and anodize over aluminum. This method’s reliability depends on the part’s geometry and the coating’s thickness. The substrate needs to be known prior to taking readings. Eddy current probes shouldn’t be used for measuring nonmagnetic coatings over magnetic substrates such as steel and nickel over aluminum substrates. If users must measure coatings over magnetic or nonferrous conductive substrates they will be best served with a dual magnetic induction/Eddy current gage that automatically recognizes the substrate. A third method, called the Coulometric method of coating thickness measurement, is a destructive testing method that has many important functions. Measuring the duplex nickel coatings in the automotive industry is one of it major applications. In the coulometric method, the weight of an area of known size on a metallic coating is determined through localized anodic stripping of the coating. The mass-per-unit area of the coating thickness is then calculated. This measurement on the coating is made using an electrolysis cell, which is filled with an electrolyte specifically selected to strip the particular coating. A constant current runs through the test cell, and since the coating material serves as the anode, it gets deplated. The current density and the surface area are constant, and thus the coating thickness is proportional to the time it takes to strip and take off the coating. This method is very useful for measuring electrically conductive coatings on a conductive substrate. The Coulometric method can also be used for determining the coating thickness of multiple layers on a sample. For example, the thickness of nickel and copper can be measured on a part with a top coating of nickel and an intermediate copper coating on a steel substrate. Another example of a multilayer coating is chrome over nickel over copper on top of a plastic substrate. Coulometric test method is popular in electroplating plants with a small number of random samples. Yet a fourth method is the Beta Backscatter Method for measuring coating thicknesses. A beta-emitting isotope irradiates a test sample with beta particles. A beam of beta particles is directed through an aperture onto the coated component, and a proportion of these particles are backscattered as expected from the coating through the aperture to penetrate the thin window of a Geiger Muller tube. The gas in the Geiger Muller tube ionizes, causing a momentary discharge across the tube electrodes. The discharge which is in the form of a pulse is counted and translated to a coating thickness. Materials with high atomic numbers backscatter the beta particles more. For a sample with copper as a substrate and a gold coating of 40 microns thick, the beta particles are scattered by both the substrate and the coating material. If the gold coating thickness increases, the backscatter rate also increases. The change in the rate of particles scattered is therefore a measure of the coating thickness. Applications that are suitable for the beta backscatter method are those where the atomic number of the coating and substrate differ by 20 percent. These include gold, silver or tin on electronic components, coatings on machine tools, decorative platings on plumbing fixtures, vapor-deposited coatings on electronic components, ceramics and glass, organic coatings such as oil or lubricant over metals. The beta backscatter method is useful for thicker coatings and for substrate & coating combinations where magnetic induction or Eddy current methods won’t work. Changes in alloys affect the beta backscatter method, and different isotopes and multiple calibrations might be required to compensate. An example would be tin/lead over copper, or tin over phosphorous/bronze well known in printed circuit boards and contact pins, and in these cases the changes in alloys would be better measured with the more expensive X-ray fluorescence method. The X-ray fluorescence method for measuring coating thickness is a noncontact method that allows the measurement of very thin multilayer alloy coatings on small and complex parts. Parts are exposed to X-radiation. A collimator focuses the X-rays onto an exactly defined area of the test specimen. This X-radiation causes characteristic X-ray emission (i.e., fluorescence) from both the coating and the substrate materials of the test specimen. This characteristic X-ray emission is detected with an energy dispersive detector. Using the appropriate electronics, it’s possible to register only the X-ray emission from the coating material or substrate. It’s also possible to selectively detect a specific coating when intermediate layers are present. This technique is widely used on printed circuit boards, jewelry and optical components. The X-ray fluorescence is not suitable for organic coatings. The measured coating’s thickness should not exceed 0.5-0.8 mils. However, unlike the beta backscatter method, X-ray fluorescence can measure coatings with similar atomic numbers (for example nickel over copper). As previously mentioned, different alloys affect an instrument’s calibration. Analyzing base material and coating’s thickness are critical for ensuring precision readings. Todays systems and software programs reduce the need for multiple calibrations without sacrificing quality. Finally it is worth mentioning that there are gages that can operate in several of the above mentioned modes. Some have detachable probes for flexibility in use. Many of these modern instruments do offer statistical analysis capabilities for process control and minimal calibration requirements even if used on differently shaped surfaces or different materials. SURFACE ROUGHNESS TESTERS : Surface roughness is quantified by the deviations in the direction of the normal vector of a surface from its ideal form. If these deviations are large, the surface is considered rough; if they are small, the surface is considered smooth. Commercially available instruments called SURFACE PROFILOMETERS are used to measure and record surface roughness. One of the commonly used instruments features a diamond stylus traveling along a straight line over the surface. The recording instruments are able to compensate for any surface waviness and indicate only roughness. Surface roughness can be observed through a.) Interferometry and b.) Optical microscopy, scanning-electron microscopy, laser or atomic-force microscopy (AFM). Microscopy techniques are especially useful for imaging very smooth surfaces for which features cannot be captured by less sensitive instruments. Stereoscopic photographs are useful for 3D views of surfaces and can be used to measure surface roughness. 3D surface measurements can be performed by three methods. Light from an optical-interference microscope shines against a reflective surface and records the interference fringes resulting from the incident and reflected waves. Laser profilometers are used to measure surfaces through either interferometric techniques or by moving an objective lens to maintain a constant focal length over a surface. The motion of the lens is then a measure of the surface. Lastly, the third method, namely the atomic-force microscope, is used for measuring extremely smooth surfaces on the atomic scale. In other words with this equipment even atoms on the surface can be distinguished. This sophisticated and relatively expensive equipment scans areas of less than 100 micron square on specimen surfaces. GLOSS METERS, COLOR READERS, COLOR DIFFERENCE METER : A GLOSSMETERmeasures the specular reflection gloss of a surface. A measure of gloss is obtained by projecting a light beam with fixed intensity and angle onto a surface and measuring the reflected amount at an equal but opposite angle. Glossmeters are used on a variety of materials such as paint, ceramics, paper, metal and plastic product surfaces. Measuring gloss can serve companies in assuring quality of their products. Good manufacturing practices require consistency in processes and this includes consistent surface finish and appearance. Gloss measurements are carried out at a number of different geometries. This depends on the surface material. For example metals have high levels of reflection and therefore the angular dependence is less as compared to non-metals such as coatings and plastics where angular dependence is higher due to diffuse scattering and absorption. Illumination source and observation reception angles configuration allows measurement over a small range of the overall reflection angle. The measurement results of a glossmeter are related to the amount of reflected light from a black glass standard with a defined refractive index. The ratio of the reflected light to the incident light for the test specimen, compared to the ratio for the gloss standard, is recorded as gloss units (GU). Measurement angle refers to the angle between the incident and reflected light. Three measurement angles (20°, 60°, and 85°) are used for the majority of industrial coatings. The angle is selected based on the anticipated gloss range and the following actions are taken depending on the measurement: Gloss Range..........60° Value.......Action High Gloss............>70 GU..........If measurement exceeds 70 GU, change test setup to 20° to optimize measurement accuracy. Medium Gloss........10 - 70 GU Low Gloss.............<10 GU..........If measurement is less than 10 GU, change test setup to 85° to optimize measurement accuracy. Three types of instruments are available commercially: 60° single angle instruments, a double-angle type that combines 20° and 60° and a triple-angle type that combines 20°, 60° and 85°. Two additional angles are used for other materials, the angle of 45° is specified for the measurement of ceramics, films, textiles and anodized aluminum, while the measurement angle 75° is specified for paper and printed materials. A COLOR READER or also referred to as COLORIMETER is a device that measures the absorbance of particular wavelengths of light by a specific solution. Colorimeters are most commonly used to determine the concentration of a known solute in a given solution by the application of the Beer-Lambert law, which states that the concentration of a solute is proportional to the absorbance. Our portable color readers can also be used on plastic, painting, platings, textiles, printing, dye making, food such as butter, french fries, coffee, baked products and tomatoes….etc. They can be used by amateurs who don’t have professional knowledge on colors. Since there are many types of color readers, the applications are endless. In quality control they are used mainly to insure samples fall within color tolerances set by the user. To give you an example, there are handheld tomato colorimeters which use an USDA approved index to measure and grade the color of processed tomato products. Yet another example are handheld coffee colorimeters specifically designed to measure the color of whole green beans, roasted beans, and roasted coffee using industry standard measurements. Our COLOR DIFFERENCE METERS display directly color difference by E*ab, L*a*b, CIE_L*a*b, CIE_L*c*h. Standard deviation is within E*ab0.2 They work on any color and testing takes only seconds of time. METALLURGICAL MICROSCOPES and INVERTED METALLOGRAPHIC MICROSCOPE : Metallurgical microscope is usually an optical microscope, but differs from others in the method of the specimen illumination. Metals are opaque substances and therefore they must be illuminated by frontal lighting. Therefore the source of light is located within the microscope tube. Installed in the tube is a plain glass reflector. Typical magnifications of metallurgical microscopes are in the x50 – x1000 range. Bright field illumination is used for producing images with bright background and dark non-flat structure features such as pores, edges and etched grain boundaries. Dark field illumination is used for producing images with dark background and bright non-flat structure features such as pores, edges, and etched grain boundaries. Polarized light is used for viewing metals with non-cubic crystalline structure such as magnesium, alpha-titanium and zinc, responding to cross-polarized light. Polarized light is produced by a polarizer which is located before the illuminator and analyzer and placed before the eyepiece. A Nomarsky prism is used for differential interference contrast system which makes it possible to observe features not visible in bright field. INVERTED METALLOGRAPHIC MICROSCOPES have their light source and condenser on the top, above the stage pointing down, while the objectives and turret are below the stage pointing up. Inverted microscopes are useful for observing features at the bottom of a large container under more natural conditions than on a glass slide, as is the case with a conventional microscope. Inverted microscopes are used in metallurgical applications where polished samples can be placed on top of the stage and viewed from underneath using reflecting objectives and also in micromanipulation applications where space above the specimen is required for manipulator mechanisms and the microtools they hold. Here is a brief summary of some of our test instruments for the evaluation of surfaces and coatings. You can download details of these from the product catalog links provided above. Surface Roughness Tester SADT RoughScan : This is a portable, battery-powered instrument for checking surface roughness with the measured values displayed on a digital readout. The instrument is easy to use and can be used in the lab, manufacturing environments, in shops, and wherever surface roughness testing is required. SADT GT SERIES Gloss Meters : GT series gloss meters are designed and manufactured according to international standards ISO2813, ASTMD523 and DIN67530. The technical parameters conform to JJG696-2002. The GT45 gloss meter is especially designed for measuring plastic films and ceramics, small areas and curved surfaces. SADT GMS/GM60 SERIES Gloss Meters : These glossmeters are designed and manufactured according to international standards ISO2813, ISO7668, ASTM D523, ASTM D2457. The technical parameters also conform to JJG696-2002. Our GM Series gloss meters are well suited to measure painting, coating, plastic, ceramics, leather products, paper, printed materials, floor coverings…etc. It has an appealing and user friendly design, three - angle gloss data is displayed simultaneously, large memory for measurement data, latest bluetooth function and removable memory card to transmit data conveniently, special gloss software to analyze data output, low battery and memory-full indicator. Through Internal bluetooth module and USB interface, GM gloss meters can transfer data to PC or exported to printer via printing interface. Using optional SD cards memory can be extended as much as needed. Precise Color Reader SADT SC 80 : This color reader is mostly used on plastics, paintings,, platings, textiles & costumes, printed products and in the dye manufacturing industries. It is capable to perform color analysis. The 2.4” color screen and portable design offers comfortable use. Three kinds of light sources for user selection, SCI and SCE mode switch and metamerism analysis satisfy your test needs under different work conditions. Tolerance setting, auto -judge color difference values and color deviation functions make you determine the color easily even if you don’t have any professional knowledge on colors. Using professional color analysis software users can perform the color data analysis and observe color differences on the output diagrams. Optional mini printer enables users to print out the color data on site. Portable Color Difference Meter SADT SC 20 : This portable color difference meter is widely used in quality control of plastic and printing products. It is used to capture color efficiently and accurately. Easy to operate, displays color difference by E*ab, L*a*b, CIE_L*a*b, CIE_L*c*h., standard deviation within E*ab0.2, it can be connected to computer through the USB expansion interface for inspection by software. Metallurgical Microscope SADT SM500 : It is a self-contained portable metallurgical microscope ideally suited for metallographic evaluation of metals in laboratory or in situ. Portable design and unique magnetic stand, the SM500 can be attached directly against the surface of ferrous metals at any angle, flatness, curvature and surface complexity for non-destructive examination. The SADT SM500 can also be used with digital camera or CCD image processing system to download metallurgical images to PC for data transfer, analysis, storage and printout. It is basically a portable metallurgical laboratory, with on-site sample preparation, microscope, camera and no need for AC power supply in the field. Natural colors without the need for changing light by dimming the LED lighting provides the best image observed at any time. This instrument has optional accessories including additional stand for small samples, digital camera adapter with eyepiece, CCD with interface, eyepiece 5x/10x/15x/16x, objective 4x/5x/20x/25x/40x/100x, mini grinder, electrolytic polisher, a set of wheel heads, polishing cloth wheel, replica film, filter (green, blue, yellow), bulb. Portable Metallurgraphic Microscope SADT Model SM-3 : This instrument offers a special magnetic base, fixing the unit firmly on the work pieces, it is suitable for large-scale roll test and direct observation, no cutting and sampling needed, LED lighting, uniform color temperature, no heating, forward / backward and left / right moving mechanism, convenient for adjustment of the inspection point, adapter for connecting digital cameras and observing the recordings directly on PC. Optional accessories are similar to the SADT SM500 model. For details, please download product catalog from the link above. Metallurgical Microscope SADT Model XJP-6A : This metalloscope can be easily used in factories, schools, scientific research institutions for identifying and analyzing the microstructure of all kinds of metals and alloys. It is the ideal tool for testing metal materials, verifying the quality of castings and analyzing metallographic structure of the metalized materials. Inverted Metallographic Microscope SADT Model SM400 : The design makes possible inspecting grains of metallurgical samples. Easy installation at the production line and easy to carry. The SM400 is suitable for colleges and factories. An adapter for attaching digital camera to the trinocular tube is also available. This mode needs MI of the metallographic image printing with fixed sizes. We have a selection of CCD adapters for computer print-out with standard magnification and over 60% observation view. Inverted Metallographic Microscope SADT Model SD300M : Infinite focusing optics provides high resolution images. Long distance viewing objective, 20 mm wide field of view, three -plate mechanical stage accepting almost any sample size, heavy loads and allowing nondestructive microscope examination of large components. The three-plate structure provides the microscope stability and durability. The optics provides high NA and long viewing distance, delivering bright, high-resolution images. The new optical coating of SD300M is dust and damp proof. For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Automation Robotic Systems Manufacturing | agstech

    Motion Control, Positioning, Motorized Stage, Actuator, Gripper, Servo Amplifier, Hardware Software Interface Card, Translation Stages, Rotary Table,Servo Motor Automation & Robotic Systems Manufacturing and Assembly Being an engineering integrator, we can provide you AUTOMATION SYSTEMS including: • Motion control and positioning assemblies, motors, motion controller, servo amplifier, motorized stage, lift stage, goniometers, drives, actuators, grippers, direct drive air bearing spindles, hardware-software interface cards and software, custom built pick and place systems, custom built automated inspection systems assembled from translation/rotary stages and cameras, custom built robots, custom automation systems. We also supply manual positioner, manual tilt, rotary or linear stage for simpler applications. A large selection of linear and rotary tables/slides/stages that utilize brushless linear direct-drive servomotors, as well as ball screw models driven with brush or brushless rotary motors are available. Air bearing systems are also an option in automation. Depending on your automation requirements and application, we choose translation stages with suitable travel distance, speed, accuracy, resolution, repeatability, load capacity, in-position stability, reliability...etc. Again, depending on your automation application we can supply you either a purely linear or linear/rotary combination stage. We can manufacture special fixtures, tools and combine them with your motion control hardware to turn them into a complete turnkey automation solution for you. If you require also assistance with installing drivers, code writing for specially developed software with user friendly interface, we can send our experienced automation engineer to your site on a contract basis. Our engineer can directly communicate with you on a daily basis so that at the end you have a custom tailored automation system free of bugs and meeting your expectations. Goniometers: For high-accuracy angular alignment of optical components. The design utilizes direct-drive noncontact motor technology. When used with the multiplier, it provides a positioning speed of 150 degrees per second. So whether you are thinking of an automation system with a moving camera, taking snapshots of a product and analyzing the images acquired to determine a product defect, or whether you are trying to reduce manufacturing leadtimes by integrating a pick and place robot to your automated manufacturing, call us, contact us and you will be glad with the solutions we can provide you. ROBOTS and COBOTS Here are brochures of some off-shelf robots you can download. If you wish we can build you customized robots and cobots that will better fit your needs and applications. We can either redesign and modify existing robot platforms or make new designs for you. Click on blue colored text below to download catalogs: - Collaborative Robots - Customized Agricultural Robots - Customized Commercial Places Robots - Customized Health Care and Hospital Robots - Customized Warehousing Robots - Customized Robots for a Variety of Applications - Food and Beverage Delivery Robot-A302-A302D - Hospital Delivery Robot A801 - Indoor Delivery Robots A301-A301A - Indoor Delivery Robot A305 - Mobile Robot Platform A001 - Robotic Laser Welding Workstation - Robotics Product Brochure - Robotics Workstations - Robot Palletizing Workstation - Robotic Vending Machine A406 - Security Robot A602 - Selection Guide of Industrial Robot Platforms - Small Objects Transfer Robot A503 - Warehouse Logistics Robots A201-A201A - Welding Robots Brochure OTHER ALTERNATIVE ROBOTS and COBOTS No one design or product meets every customer's needs. Below are downloadable brochures for our other products. - Hikrobot Mobile Robots Catalog - Hikvision Logistic Vision Solutions AUTOMATION COMPONENTS AND SPARE PARTS Click on highlighted text to download brochures and catalogs of products you can use as accessories, spare components in building automation systems, robots and cobots: - Barcode and Fixed Mount Scanners - RFID Products - Mobile Computers - Micro Kiosks OEM Technology (We private label these with your brand name and logo if you wish) - Barcode Scanners (We private label these with your brand name and logo if you wish) - Fixed Industrial Scanners (We private label these with your brand name and logo if you wish) - Hikrobot Machine Vision Products - Hikrobot Smart Machine Vision Products - Hikrobot Machine Vision Standard Products - Kinco automation products, including HMI, stepper system, ED servo, CD servo, PLC, field bus. - Kiosk Systems (We private label these with your brand name and logo if you wish) - Kiosk Systems Accessories Guide (We private label these with your brand name and logo if you wish) - Linear Bearings, Die-Set Flange Mount Bearings, Pillow Blocks, Square Bearings and various Shafts & Slides for motion control - Mobile Computers for Enterprises (We private label these with your brand name and logo if you wish) - Motor Starter with UL and CE Certification NS2100111-1158052 - Printers for Barcode Scanners and Mobile Computers (We private label these with your brand name and logo if you wish) - Process Automation Solutions (We private label these with your brand name and logo if you wish) - RFID Readers - Scanners - Encoders - Printers (We private label these with your brand name and logo if you wish) - Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals Download brochure for our CUSTOM MACHINE AND EQUIPMENT MANUFACTURING Dowload brochure for our DESIGN PARTNERSHIP PROGRAM If you are looking for industrial computers, embedded computers, panel PC for your automation system, we invite you to visit our industrial computers store at http://www.agsindustrialcomputers.com If you would like to obtain more information about our engineering and research & development capabilities besides manufacturing capabilities, then we invite you to visit our engineering site http://www.ags-engineering.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Ultrasonic Machining, Ultrasonic Impact Grinding, Custom Manufacturing

    Ultrasonic Machining, Ultrasonic Impact Grinding, Rotary Ultrasonic Machining, Non-Conventional Machining, Custom Manufacturing - AGS-TECH Inc. New Mexico, USA Ultrasonic Machining & Rotary Ultrasonic Machining & Ultrasonic Impact Grinding Another popular NON-CONVENTIONAL MACHINING technique we frequently use is ULTRASONIC MACHINING (UM), also widely known as ULTRASONIC IMPACT GRINDING, where material is removed from a workpiece surface by microchipping and erosion with abrasive particles using a vibrating tool oscillating at ultrasonic frequencies, aided by an abrasive slurry that flows freely between the workpiece and the tool. It differs from most other conventional machining operations because very little heat is produced. The tip of the ultrasonic machining tool is called a “sonotrode” which vibrates at amplitudes of 0.05 to 0.125 mm and frequencies around 20 kHz. The vibrations of the tip transmit high velocities to fine abrasive grains between the tool and the surface of the workpiece. The tool never contacts the workpiece and therefore the grinding pressure is rarely more than 2 pounds. This working principle makes this operation perfect for machining extremely hard and brittle materials, such as glass, sapphire, ruby, diamond, and ceramics. The abrasive grains are located within a water slurry with a concentration between 20 to 60% by volume. The slurry also acts as the carrier of the debris away from the cutting / machining region. We use as abrasive grains mostly boron carbide, aluminum oxide and silicon carbide with grain sizes ranging from 100 for roughing processes to 1000 for our finishing processes. The ultrasonic-machining (UM) technique is best suited for hard and brittle materials like ceramics and glass, carbides, precious stones, hardened steels. The surface finish of ultrasonic machining depends upon the hardness of the workpiece/tool and the average diameter of the abrasive grains used. The tool tip is generally a low-carbon steel, nickel and soft steels attached to a transducer through the toolholder. The ultrasonic-machining process utilizes the plastic deformation of metal for the tool and the brittleness of the workpiece. The tool vibrates and pushes down on the abrasive slurry containing grains until the grains impact the brittle workpiece. During this operation, the workpiece is broken down while the tool bends very slightly. Using fine abrasives, we can achieve dimensional tolerances of 0.0125 mm and even better with ultrasonic-machining (UM). Machining time depends upon the frequency at which the tool is vibrating, the grain size and hardness, and the viscosity of the slurry fluid. The less viscous the slurry fluid, the faster it can carry away used abrasive. Grain size must be equal or greater than the hardness of the workpiece. As an example we can machine multiple aligned holes 0.4 mm in diameter on a 1.2 mm wide glass strip with ultrasonic machining. Let us get a little bit into the physics of the ultrasonic machining process. Microchipping in ultrasonic machining is possible thanks to the high stresses produced by particles striking the solid surface. Contact times between particles and surfaces are very short and in the order of 10 to 100 microseconds. The contact time can be expressed as: to = 5r/Co x (Co/v) exp 1/5 Here r is the radius of the spherical particle, Co is the elastic wave velocity in the workpiece (Co = sqroot E/d) and v is the velocity that the particle hits the surface with. The force a particle exerts on the surface is obtained from the rate of change of momentum: F = d(mv)/dt Here m is the grain mass. The average force of the particles (grains) hitting and rebounding from the surface is: Favg = 2mv / to Here to is the contact time. When numbers are plugged into this expression, we see that even though the parts are very small, since the contact area is also very small, the forces and thus the stresses exerted are significantly high to cause microchipping and erosion. ROTARY ULTRASONIC MACHINING (RUM): This method is a variation of ultrasonic machining, where we replace the abrasive slurry with a tool that has metal-bonded diamond abrasives that have been either impregnated or electroplated on the tool surface. The tool is rotated and ultrasonically vibrated. We press the workpiece at constant pressure against the rotating and vibrating tool. The rotary ultrasonic machining process gives us capabilities such as producing deep holes in hard materials at high material removal rates. Since we deploy a number of conventional and non-conventional manufacturing techniques, we can be of help to you whenever you have questions about a particular product and the fastest and most economical way of manufacturing & fabricating it. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Chemical Physical Environmental Analyzers, NDT, Nondestructive Testing

    Chemical Physical Environmental Analyzers, NDT, Nondestructive Testing, Analytical Balance, Chromatograph, Mass Spectrometer, Gas Analyzer, Moisture Analyzer Chemical, Physical, Environmental Analyzers The industrial CHEMICAL ANALYZERS we provide are: CHROMATOGRAPHS, MASS SPECTROMETERS, RESIDUAL GAS ANALYZERS, GAS DETECTORS, MOISTURE ANALYZER, DIGITAL GRAIN AND WOOD MOISTURE METERS, ANALYTICAL BALANCE The industrial PHYSICAL ANALYSIS INSTRUMENTS we offer are: SPECTROPHOTOMETERS, POLARIMETER, REFRACTOMETER, LUX METER, GLOSS METERS, COLOR READERS, COLOR DIFFERENCE METER , DIGITAL LASER DISTANCE METERS, LASER RANGEFINDER, ULTRASONIC CABLE HEIGHT METER, SOUND LEVEL METER, ULTRASONIC DISTANCE METER , DIGITAL ULTRASONIC FLAW DETECTOR , HARDNESS TESTER , METALLURGICAL MICROSCOPES , SURFACE ROUGHNESS TESTER , ULTRASONIC THICKNESS GAUGE , VIBRATION METER , TACHOMETER . and others...... For the highlighted products, please visit our related pages by clicking on the corresponding colored text above. The ENVIRONMENTAL ANALYZERS we provide are: TEMPERATURE & HUMIDITY CYCLING CHAMBERS, ENVIRONMENTAL TESTING CHAMBERS, LIQUID ANALYSIS & TEST SYSTEMS. Click on Colored Text to Download Catalogs below. Choose the brand and model number of your interest and let us know whether you need brand new, or refurbished / used equipment: AMETEK-LLOYD Instruments Materials Testing (Versatile Materials Testing Equipment, Universal Test Machines, Tensile Strength, Compressibility, Hardness, Elasticity, Peeling, Adhesion...etc.) ELCOMETER Inspection Equipment Catalog ( Physical Test Equipment , Gloss & Reflectance , Colour Measurement , Fineness Of Grind/Dispersion , Density & Specific Gravity , Viscosity & Flow Measurement , Film Application & Test Charts , Drying Time & Permeability , Washability & Abrasion , Hardness & Scratch Resistance , Elasticity, Bend & Impact Testers , Flash Point, Concrete Inspection Equipment ) FLUKE Test Tools Catalog (includes Indoor Air Quality Tools, Air Meter, Airflow Meter, Temperature-Humidity Meter, Particle Counter, Carbon Monoxide Meters) HAIDA Anti-Yellowing Aging Test Chamber HAIDA Color Assessment Cabinet HAIDA IPX1&X2 Water Drip Test Chamber HAIDA Rapid-Rate Thermal Cycle Chamber HAIDA Salt Corrosion Spray Test Chamber HAIDA Salt Spray Test Chamber HAIDA Sand Dust Proofing Test Chamber HAIDA Temperature Humidity Test Chamber HAIDA Thermal Shock Test Chamber HAIDA Ultraviolet Weathering Test Chamber HAIDA Walk-In Environmental Test Chamber HAIDA Xenon Aging Test Chamber High HAIDA Xenon Aging Test Chamber Standard Helium Leak Tester (We private label these with your brand name and logo if you wish) METTLER TOLEDO Weighing Solutions for Retail Stores SADT-SINOAGE brand metrology and test equipment, please CLICK HERE . You will find some models of the above listed equipment here. Sensors & Analytical Measurement Systems for Liquid Analysis (Products in this brochure are used for environmental tests and and tests carried out in process industries. Example products are conductivity sensors, dissolved oxygen sensors, chlorine sensors, turbidity/suspended solids sensors, optical sensors, transmitters....etc. We private label these with your brand name and logo if you wish) Sensors & Analytical Measurement Systems for Optical OEM Applications in Liquid Analysis (We private label these with your brand name and logo if you wish) Sensors & Analytical Measurement Systems for pH Testing (We private label these with your brand name and logo if you wish) Some fundamental information on these test systems: CHROMATOGRAPHY is a physical method of separation that distribute s components to separate between two phases, one stationary (stationary phase), the other (the mobile phase) moving in a definite direction. In other words, it refers to laboratory techniques for the separation of mixtures. The mixture is dissolved in a fluid called the mobile phase, which carries it through a structure holding another material called the stationary phase. The various constituents of the mixture travel at different speeds, which causes them to separate. The separation is based on differential partitioning between the mobile and stationary phases. Small differences in partition coefficient of a compound results in differential retention on the stationary phase and thus changing the separation. Chromatography can be used to separate the components of a mixture for more advanced use such as purification) or for measuring the relative proportions of analytes (which is the substance to be separated during chromatography) in a mixture. Several chromatographic methods exist, such as paper chromatography, gas chromatography and high performance liquid chromatography. ANALYTICAL CHROMATOGRAPHY is used to determine the existence and the concentration of analyte(s) in a sample. In a chromatogram different peaks or patterns correspond to different components of the separated mixture. In an optimal system each signal is proportional to the concentration of the corresponding analyte that was separated. An equipment called CHROMATOGRAPH enables a sophisticated separation. There are specialized types according to the physical state of the mobile phase such as GAS CHROMATOGRAPHS and LIQUID CHROMATOGRAPHS. Gas chromatography (GC), also sometimes called gas-liquid chromatography (GLC), is a separation technique in which the mobile phase is a gas. High temperatures used in Gas Chromatographs make it unsuitable for high molecular weight biopolymers or proteins encountered in biochemistry because heat denatures them. The technique is however well suited for use in the petrochemical, environmental monitoring, chemical research and industrial chemical fields. On the other hand, Liquid Chromatography (LC) is a separation technique in which the mobile phase is a liquid. In order to measure the characteristics of individual molecules, a MASS SPECTROMETER converts them to ions so that they can be accelerated, and moved about by external electric and magnetic fields. Mass spectrometers are used in Chromatographs explained above, as well as in other analysis instruments. The associated components of a typical mass spectrometer are: Ion Source: A small sample is ionized, usually to cations by loss of an electron. Mass Analyzer: The ions are sorted and separated according to their mass and charge. Detector: The separated ions are measured and results displayed on a chart. Ions are very reactive and short-lived, therefore their formation and manipulation must be conducted in a vacuum. The pressure under which ions may be handled is roughly 10-5 to 10-8 torr. The three tasks listed above may be accomplished in different ways. In one common procedure, ionization is effected by a high energy beam of electrons, and ion separation is achieved by accelerating and focusing the ions in a beam, which is then bent by an external magnetic field. The ions are then detected electronically and the resulting information is stored and analyzed in a computer. The heart of the spectrometer is the ion source. Here molecules of the sample are bombarded by electrons emanating from a heated filament. This is called an electron source. Gases and volatile liquid samples are allowed to leak into the ion source from a reservoir and non-volatile solids and liquids may be introduced directly. Cations formed by the electron bombardment are pushed away by a charged repeller plate (anions are attracted to it), and accelerated toward other electrodes, having slits through which the ions pass as a beam. Some of these ions fragment into smaller cations and neutral fragments. A perpendicular magnetic field deflects the ion beam in an arc whose radius is inversely proportional to the mass of each ion. Lighter ions are deflected more than heavier ions. By varying the strength of the magnetic field, ions of different mass can be focused progressively on a detector fixed at the end of a curved tube under a high vacuum. A mass spectrum is displayed as a vertical bar graph, each bar representing an ion having a specific mass-to-charge ratio (m/z) and the length of the bar indicates the relative abundance of the ion. The most intense ion is assigned an abundance of 100, and it is referred to as the base peak. Most of the ions formed in a mass spectrometer have a single charge, so the m/z value is equivalent to mass itself. Modern mass spectrometers have very high resolutions and can easily distinguish ions differing by only a single atomic mass unit (amu). A RESIDUAL GAS ANALYZER (RGA) is a small and rugged mass spectrometer. We have explained mass spectrometers above. RGAs are designed for process control and contamination monitoring in vacuum systems such as research chambers, surface science setups, accelerators, scanning microscopes. Utilizing quadrupole technology, there are two implementations, utilizing either an open ion source (OIS) or a closed ion source (CIS). RGAs are used in most cases to monitor the quality of the vacuum and easily detect minute traces of impurities possessing sub-ppm detectability in the absence of background interferences. These impurities can be measured down to (10)Exp -14 Torr levels, Residual Gas Analyzers are also used as sensitive in-situ, helium leak detectors. Vacuum systems require checking of the integrity of the vacuum seals and the quality of the vacuum for air leaks and contaminants at low levels before a process is initiated. Modern residual gas analyzers come complete with a quadrupole probe, electronics control unit , and a real-time Windows software package that is used for data acquisition and analysis, and probe control. Some software supports multiple head operation when more than one RGA is needed. Simple design with a small number of parts will minimize outgassing and reduce the chances of introducing impurities into your vacuum system. Probe designs using self-aligning parts will ensure easy reassembled after cleaning. LED indicators on modern devices provide instant feedback on the status of the electron multiplier, filament, electronics system and the probe. Long-life, easily changeable filaments are used for electron emission. For increased sensitivity and faster scan rates, an optional electron multiplier is sometimes offered that detects partial pressures down to 5 × (10)Exp -14 Torr. Another attractive feature of residual gas analyzers is the built-in degassing feature. Using electron impact desorption, the ion source is thoroughly cleaned, greatly reducing the ionizer's contribution to background noise. With a large dynamic range the user can make measurements of small and large gas concentrations simultaneously. A MOISTURE ANALYZER determines the remaining dry mass after a drying process with infrared energy of the original matter which is previously weighed. Humidity is calculated in relation to the weight of the wet matter. During the drying process, the decrease of moisture in the material is shown on the display. The moisture analyzer determines moisture and the amount of dry mass as well as the consistency of volatile and fixed substances with high accuracy. The weighing system of the moisture analyzer possesses all the properties of modern balances. These metrology tools are used in the industrial sector to analyze pastes, wood, adhesive materials, dust,…etc. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be controlled for plastics, pharmaceuticals and heat treatment processes. Trace moisture in gases and liquids need to be measured and controlled as well. Examples include dry air, hydrocarbon processing, pure semiconductor gases, bulk pure gases, natural gas in pipelines….etc. The loss on drying type analyzers incorporate an electronic balance with a sample tray and surrounding heating element. If the volatile content of the solid is primarily water, the LOD technique gives a good measure of moisture content. An accurate method for determining the amount of water is the Karl Fischer titration, developed by the German chemist. This method detects only water, contrary to loss on drying, which detects any volatile substances. Yet for natural gas there are specialized methods for the measurement of moisture, because natural gas poses a unique situation by having very high levels of solid and liquid contaminants as well as corrosives in varying concentrations. MOISTURE METERS are test equipment for measuring the percentage of water in a substance or material. Using this information, workers in various industries determine if the material is ready for use, too wet or too dry. For example, wood and paper products are very sensitive to their moisture content. Physical properties including dimensions and weight are strongly affected by moisture content. If you are purchasing large quantities of wood by weight, it will be a wise thing to measure the moisture content to make sure it is not intentionally watered to increase the price. Generally two basic types of moisture meters are available. One type measures the electrical resistance of the material, which becomes increasingly lower as the moisture content of it rises. With the electrical resistance type of moisture meter, two electrodes are driven into the material and the electrical resistance is translated into moisture content on the device’s electronic output. A second type of moisture meter relies on the dielectric properties of the material, and requires only surface contact with it. The ANALYTICAL BALANCE is a basic tool in quantitative analysis, used for the accurate weighing of samples and precipitates. A typical balance should be able to determine differences in mass of 0.1 milligram. In microanalyses the balance must be about 1,000 times more sensitive. For special work, balances of even higher sensitivity are available. The measuring pan of an analytical balance is inside a transparent enclosure with doors so that dust does not collect and air currents in the room do not affect the balance's operation. There is a smooth turbulence-free airflow and ventilation that prevents balance fluctuation and the measure of mass down to 1 microgram without fluctuations or loss of product. Maintaining consistent response throughout the useful capacity is achieved by maintaining a constant load on the balance beam, thus the fulcrum, by subtracting mass on the same side of the beam to which the sample is added. Electronic analytical balances measure the force needed to counter the mass being measured rather than using actual masses. Therefore they must have calibration adjustments made to compensate for gravitational differences. Analytical balances use an electromagnet to generate a force to counter the sample being measured and outputs the result by measuring the force needed to achieve balance. SPECTROPHOTOMETRY is the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength, and SPECTROPHOTOMETER is the test equipment used for this purpose. The spectral bandwidth (the range of colors it can transmit through the test sample), the percentage of sample-transmission, the logarithmic range of sample-absorption and percentage of reflectance measurement are critical for spectrophotometers. These test instruments are widely used in optical component testing where optical filters, beam splitters, reflectors, mirrors…etc need to be evaluated for their performance. There are many other applications of spectrophotometers including the measurement of transmission and reflection properties of pharmaceutical and medical solutions, chemicals, dyes, colors……etc. These tests ensure consistency from batch to batch in production. A spectrophotometer is able to determine, depending on the control or calibration, what substances are present in a target and their quantities through calculations using observed wavelengths. The range of wavelengths covered is generally between 200 nm - 2500 nm using different controls and calibrations. Within these ranges of light, calibrations are needed on the machine using specific standards for the wavelengths of interest. There are two major types of spectrophotometers, namely single beam and double beam. Double beam spectrophotometers compare the light intensity between two light paths, one path containing a reference sample and the other path containing the test sample. A single-beam spectrophotometer on the other hand measures the relative light intensity of the beam before and after a test sample is inserted. Although comparing measurements from double-beam instruments are easier and more stable, single-beam instruments can have a larger dynamic range and are optically simpler and more compact. Spectrophotometers can be installed also into other instruments and systems which can help users to perform in-situ measurements during production…etc. The typical sequence of events in a modern spectrophotometer can be summarized as: First the light source is imaged upon the sample, a fraction of the light is transmitted or reflected from the sample. Then the light from the sample is imaged upon the entrance slit of the monochromator, which separates the wavelengths of light and focuses each of them onto the photodetector sequentially. The most common spectrophotometers are UV & VISIBLE SPECTROPHOTOMETERS which operate in the ultraviolet and 400–700 nm wavelength range. Some of them cover the near-infrared region too. On the other hand, IR SPECTROPHOTOMETERS are more complicated and expensive because of the technical requirements of measurement in the infrared region. Infrared photosensors are more valuable and Infrared measurement is also challenging because almost everything emits IR light as thermal radiation, especially at wavelengths beyond about 5 m. Many materials used in other types of spectrophotometers such as glass and plastic absorb infrared light, making them unfit as the optical medium. Ideal optical materials are salts such as potassium bromide, which do not absorb strongly. A POLARIMETER measures the angle of rotation caused by passing polarized light through an optically active material. Some chemical materials are optically active, and polarized (unidirectional) light will rotate either to the left (counter-clockwise) or right (clockwise) when passed through them. The amount by which the light is rotated is called the angle of rotation. One popular application, concentration and purity measurements are made to determine product or ingredient quality in the food, beverage and pharmaceutical industries. Some samples that display specific rotations that can be calculated for purity with a polarimeter include the Steroids, Antibiotics, Narcotics, Vitamins, Amino Acids, Polymers, Starches, Sugars. Many chemicals exhibit a unique specific rotation which can be used to distinguish them. A Polarimeter can identify unknown specimens based on this if other variables like concentration and length of sample cell are controlled or at least known. On the other hand, if the specific rotation of a sample is already known, then the concentration and/or purity of a solution containing it can be calculated. Automatic polarimeters calculate these once some input on variables are entered by the user. A REFRACTOMETER is a piece of optical test equipment for the measurement of index of refraction. These instruments measure the extent to which light is bent, i.e. refracted when it moves from air into the sample and are typically used to determine the refractive index of samples. There are five types of refractometers: traditional handheld refractometers, digital handheld refractometers, laboratory or Abbe refractometers, inline process refractometers and finally Rayleigh Refractometers for measuring the refractive indices of gases. Refractometers are widely used in various disciplines such as mineralogy, medicine, veterinary, automotive industry…..etc., to examine products as diverse as gemstones, blood samples, auto coolants, industrial oils. The refractive index is an optical parameter to analyze liquid samples. It serves to identify or confirm the identity of a sample by comparing its refractive index to known values, helps assess the purity of a sample by comparing its refractive index to the value for the pure substance, helps determine the concentration of a solute in a solution by comparing the solution's refractive index to a standard curve. Let us go briefly over the types of refractometers: TRADITIONAL REFRACTOMETERS take advantage of the critical angle principle by which a shadow line is projected onto a small glass thru prisms and lenses. The specimen is placed between a small cover plate and a measuring prism. The point at which the shadow line crosses the scale indicates the reading. There is automatic temperature compensation, because the refractive index varies based on temperature. DIGITAL HANDHELD REFRACTOMETERS are compact, lightweight, water and high temperature resistant testing devices. Measurement times are very short and in the range of two to three seconds only. LABORATORY REFRACTOMETERS are ideal for users planning to measure multiple parameters and get the outputs in various formats, take printouts. Laboratory refractometers offer a wider range and higher accuracy than handheld refractometers. They can be connected to computers and controlled externally. INLINE PROCESS REFRACTOMETERS can be configured to constantly collect specified statistics of the material remotely. The microprocessor control provides computer power that makes these devices very versatile, time-saving and economical. Finally, the RAYLEIGH REFRACTOMETER is used for measuring the refractive indices of gases. Quality of light is very important in the workplace, factory floor, hospitals, clinics, schools, public buildings and many other places. LUX METERS are used to measure luminuous intensity (brightness). Special optic filters match the spectral sensitivity of the human eye. Luminous intensity is measured and reported in foot-candle or lux (lx). One lux is equal to one lumen per square meter and one foot-candle is equal to one lumen per square foot. Modern lux meters are equipped with internal memory or a data logger to record the measurements, cosine correction of the angle of incident light and software to analyze readings. There are lux meters for measuring UVA radiation. High end version lux meters offer Class A status to meet CIE, graphic displays, statistical analysis functions, large measurement range up to 300 klx, manual or automatic range selection, USB and other outputs. A LASER RANGEFINDER is a test instrument which uses a laser beam to determine the distance to an object. Most laser rangefinders operation is based on the time of flight principle. A laser pulse is sent in a narrow beam towards the object and the time taken by the pulse to be reflected off the target and returned to the sender is measured. This equipment is not suitable however for high precision sub-millimeter measurements. Some laser rangefinders use the Doppler effect technique to determine whether the object is moving towards or away from the rangefinder as well as the object’s speed. The precision of a laser rangefinder is determined by the rise or fall time of the laser pulse and the speed of the receiver. Rangefinders that use very sharp laser pulses and very fast detectors are capable to measure the distance of an object to within a few millimeters. Laser beams will eventually spread over long distances due to the divergence of the laser beam. Also distortions caused by air bubbles in the air make it difficult to get an accurate reading of the distance of an object over long distances of more than 1 km in open and unobscured terrain and over even shorter distances in humid and foggy places. High end military rangefinders operate at ranges up to 25 km and are combined with binoculars or monoculars and can be connected to computers wirelessly. Laser rangefinders are used in 3-D object recognition and modelling, and a wide variety of computer vision-related fields such as time-of-flight 3D scanners offering high-precision scanning abilities. The range data retrieved from multiple angles of a single object can be used to produce complete 3-D models with as little error as possible. Laser rangefinders used in computer vision applications offer depth resolutions of tenths of millimeters or less. Many other application areas for laser rangefinders exist, such as sports, construction, industry, warehouse management. Modern laser measurement tools include functions such as capability to make simple calculations, such as the area and volume of a room, switching between imperial and metric units. An ULTRASONIC DISTANCE METER works on a similar principle as a laser distance meter, but instead of light it uses sound with a pitch too high for the human ear to hear. The speed of sound is only about 1/3 of a km per second, so the time measurement is easier. Ultrasound has many of the same advantages of a Laser Distance Meter, namely a single person and one-handed operation. There is no need to access the target personally. However ultrasound distance meters are intrinsically less accurate, because sound is far more difficult to focus than laser light. Accuracy is typically several centimeters or even worse, while it is a few millimeters for laser distance meters. Ultrasound needs a large, smooth, flat surface as the target. This is a severe limitation. You can’t measure to a narrow pipe or similar smaller targets. The ultrasound signal spreads out in a cone from the meter and any objects in the way can interfere with the measurement. Even with laser aiming, one cannot be sure that the surface from which the sound reflection is detected is the same as that where the laser dot is showing. This can lead to errors. Range is limited to tens of meters, whereas laser distance meters can measure hundreds of meters. Despite all these limitations, ultrasonic distance meters cost much less. Handheld ULTRASONIC CABLE HEIGHT METER is a test instrument for measuring cable sag, cable height and overhead clearance to ground. It is the safest method for cable height measurement because it eliminates cable contact and the use of heavy fiberglass poles. Similar to other ultrasonic distance meters, the cable height meter is a one-man simple operation device that sends ultrasound waves to target, measures time to echo, calculates distance based on speed of sound and adjusts itself for air temperature. A SOUND LEVEL METER is a testing instrument that measures sound pressure level. Sound level meters are useful in noise pollution studies for the quantification of different kinds of noise. The measurement of noise pollution is important in construction, aerospace, and many other industries. The American National Standards Institute (ANSI) specifies sound level meters as three different types, namely 0, 1 and 2. The relevant ANSI standards set performance and accuracy tolerances according to three levels of precision: Type 0 is used in laboratories, Type 1 is used for precision measurements in the field, and Type 2 is used for general-purpose measurements. For compliance purposes, readings with an ANSI Type 2 sound level meter and dosimeter are considered to have an accuracy of ±2 dBA, whereas a Type 1 instrument has an accuracy of ±1 dBA. A Type 2 meter is the minimum requirement by OSHA for noise measurements, and is usually sufficient for general purpose noise surveys. The more accurate Type 1 meter is intended for the design of cost-effective noise controls. International industry standards related to frequency weighting, peak sound pressure levels….etc are beyond the scope here due to the details associated with them . Before purchasing a particular sound level meter, we advise that you make sure to know what standards compliance your workplace requires and make the right decision in purchasing a particular model of test instrument. ENVIRONMENTAL ANALYZERS like TEMPERATURE & HUMIDITY CYCLING CHAMBERS, ENVIRONMENTAL TESTING CHAMBERS come in a variety of sizes, configurations and functions depending on the area of application, the specific industrial standards compliance needed and the end users needs. They can be configured and manufactured according to custom requirements. There is a broad range of test specifications such as MIL-STD, SAE, ASTM to help determine the most appropriate temperature humidity profile for your product. Temperature / humidity testing is generally carried out for : Accelerated Aging: Estimates the life of a product when actual lifespan is unknown under normal use. Accelerated aging exposes the product to high levels of controlled temperature, humidity, and pressure within a relatively shorter timeframe than the expected lifespan of the product. Instead of waiting long times and years to see product lifespan, one can determine it using these tests within a much shorter and reasonable time using these chambers. Accelerated Weathering: Simulates exposure from moisture, dew, heat, UV….etc. Weathering and UV exposure causes damage to coatings, plastics, inks, organic materials, devices…etc. Fading, yellowing, cracking, peeling, brittleness, loss of tensile strength, and delamination occur under prolonged UV exposure. Accelerated weathering tests are designed to determine if products will stand the test of time. Heat Soak/Exposure Thermal Shock: Aimed to determine the ability of materials, parts and components to withstand sudden changes in temperature. Thermal shock chambers rapidly cycle products between hot and cold temperature zones to see the effect of multiple thermal expansions and contractions as would be the case in nature or industrial environments throughout the many seasons and years. Pre & Post Conditioning: For conditioning of materials, containers, packages, devices…etc For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Micromanufacturing, Nanomanufacturing, Mesomanufacturing AGS-TECH Inc.

    Micromanufacturing, Nanomanufacturing, Mesomanufacturing - Electronic & Magnetic Optical & Coatings, Thin Film, Nanotubes, MEMS, Microscale Fabrication Nanoscale & Microscale & Mesoscale Manufacturing Read More Our NANOMANUFACTURING, MICROMANUFACTURING and MESOMANUFACTURING processes can be categorized as: Surface Treatments and Modification Functional Coatings / Decorative Coatings / Thin Film / Thick Film Nanoscale Manufacturing / Nanomanufacturing Microscale Manufacturing / Micromanufacturing / Micromachining Mesoscale Manufacturing / Mesomanufacturing Microelectronics & Semiconductor Manufacturing and Fabrication Microfluidic Devices Manufacturing Micro-Optics Manufacturing Micro Assembly and Packaging Soft Lithography In every smart product designed today, one can consider an element that will increase efficiency, versatility, reduce power consumption, reduce waste, increase lifetime of the product and thus be environmentally friendly. For this purpose, AGS-TECH is focusing on a number of processes and products that can be incorporated into devices and equipment to achieve these goals. For example low-friction FUNCTIONAL COATINGS can reduce power consumption. Some other functional coating examples are scratch resistant coatings, anti-wetting SURFACE TREATMENTS and coatings (hydrophobic), wetness promoting (hydrophilic) surface treatment and coatings, anti-fungal coatings, diamond like carbon coatings for cutting and scribing tools, THIN FILMelectronic coatings, thin film magnetic coatings, multilayer optical coatings. In NANOMANUFACTURING or NANOSCALE MANUFACTURING, we produce parts at nanometer length scales. In practice it refers to manufacturing operations below micrometer scale. Nanomanufacturing is still in its infancy when compared to micromanufacturing, however the trend is in that direction and nanomanufacturing is definitely very important for the near future. Some applications of nanomanufacturing today are carbon nanotubes as reinforcing fibers for composite materials in bicycle frames, baseball bats and tennis racquets. Carbon nanotubes, depending on the orientation of the graphite in the nanotube, can act as semiconductors or conductors. Carbon nanotubes have very high current-carrying capability, 1000 times higher than silver or copper. Another application of nanomanufacturing is nanophase ceramics. By using nanoparticles in producing ceramic materials, we can simultaneously increase both the strength and ductility of the ceramic. Please click on the submenu for more information. MICROSCALE MANUFACTURING or MICROMANUFACTURING refers to our manufacturing and fabrication processes on a microscopic scale not visible to the naked eye. The terms micromanufacturing, microelectronics, microelectromechanical systems are not limited to such small length scales, but instead, suggest a material and manufacturing strategy. In our micromanufacturing operations some popular techniques we use are lithography, wet and dry etching, thin film coating. A wide variety of sensors & actuators, probes, magnetic hard-drive heads, microelectronic chips, MEMS devices such as accelerometers and pressure sensors among others are manufactured using such micromanufacturing methods. You will find more detailed information on these in the submenus. MESOSCALE MANUFACTURING or MESOMANUFACTURING refers to our processes for fabrication of miniature devices such as hearing aids, medical stents, medical valves, mechanical watches and extremely small motors. Mesoscale manufacturing overlaps both macro and micromanufacturing. Miniature lathes, with 1.5 Watt motor and dimensions of 32 x 25 x 30.5 mm and weights of 100 grams have been fabricated using mesoscale manufacturing methods. Using such lathes, brass has been machined to a diameter as small as 60 microns and surface roughnesses in the order of a micron or two. Other such miniature machine tools such as milling machines and presses have also been manufactured using mesomanufacturing. In MICROELECTRONICS MANUFACTURING we use the same techniques as in micromanufacturing. Our most popular substrates are silicon, and others like gallium arsenide, Indium Phosphide and Germanium are also used. Films/coatings of many types and especially conducting and insulating thin film coatings are used in the fabrication of microelectronic devices and circuits. These devices are usually obtained from multilayers. Insulating layers are generally obtained by oxidation such as SiO2. Dopants (both p and n) type are common and parts of the devices are doped in order to alter their electronic properties and obtain p and n type regions. Using lithography such as ultraviolet, deep or extreme ultraviolet photolithography, or X-ray, electron beam lithography we transfer geometric patterns defining the devices from a photomask/mask to the substrate surfaces. These lithography processes are applied several times in the micromanufacturing of microelectronic chips in order to achieve the required structures in the design. Also etching processes are carried out by which entire films or particular sections of films or substrate are removed. Briefly, by using various deposition, etching and multiple lithographic steps we obtain the multilayer structures on the supporting semiconductor substrates. After the wafers are processed and many circuits are microfabricated on them, the repetitive parts are cut and individual dies are obtained. Each die is thereafter wire bonded, packaged and tested and becomes a commercial microelectronic product. Some more details of microelectronics manufacturing can be found in our submenu, however the subject is very extensive and therefore we encourgae you to contact us in case you need product specific information or more details. Our MICROFLUIDICS MANUFACTURING operations are aimed at fabrication of devices and systems in which small volumes of fluids are handled. Examples of microfluidic devices are micro-propulsion devices, lab-on-a-chip systems, micro-thermal devices, inkjet printheads and more. In microfluidics we have to deal with the precise control and manipulation of fluids constrained to sub-milimeter regions. Fluids are moved, mixed, separated and processed. In microfluidic systems fluids are moved and controlled either actively using tiny micropumps and microvalves and the like or passively taking advantage of capillary forces. With lab-on-a-chip systems, processes which are normally carried out in a lab are miniaturized on a single chip in order to enhance efficiency and mobility as well as reduce sample and reagent volumes. We have the capability to design microfluidic devices for you and offer microfluidics prototyping & micromanufacturing custom tailored for your applications. Another promising field in microfabrication is MICRO-OPTICS MANUFACTURING. Micro-optics allows the manipulation of light and the management of photons with micron and sub-micron scale structures and components. Micro-optics allows us to interface the macroscopic world we live in with the microscopic world of opto- and nano-electronic data processing. Micro-optical components and subsystems find widespread applications in the following fields: Information technology: In micro-displays, micro-projectors, optical data storage, micro-cameras, scanners, printers, copiers…etc. Biomedicine: Minimally-invasive/point of care diagnostics, treatment monitoring, micro-imaging sensors, retinal implants. Lighting: Systems based on LEDs and other efficient light sources Safety and Security Systems: Infrared night vision systems for automotive applications, optical fingerprint sensors, retinal scanners. Optical Communication & Telecommunication: In photonic switches, passive fiber optic components, optical amplifiers, mainframe and personal computer interconnect systems Smart structures: In optical fiber-based sensing systems and much more As the most diverse engineering integration provider we pride ourselves with our capability to provide a solution for almost any consulting, engineering, reverse engineering, rapid prototyping, product development, manufacturing, fabrication and assembly needs. After micromanufacturing our components, very often we need to continue with MICRO ASSEMBLY & PACKAGING. This involves processes such as die attachment, wire bonding, connectorization, hermetic sealing of packages, probing, testing of packaged products for environmental reliability…etc. After micromanufacturing devices on a die, we attach the die to a more rugged foundation to ensure reliability. Frequently we use special epoxy cements or eutectic alloys to bond the die to its package. After the chip or die is bonded to its substrate, we connect it electrically to the package leads using wire bonding. One method is to use very thin gold wires from the package leads to bonding pads located around the perimeter of the die. Lastly we need to do the final packaging of the connected circuit. Depending on the application and operating environment, a variety of standard and custom manufactured packages are available for micromanufactured electronic, electro-optic, and microelectromechanical devices. Another micromanufacturing technique we use is SOFT LITHOGRAPHY, a term used for a number of processes for pattern transfer. A master mold is needed in all cases and is microfabricated using standard lithography methods. Using the master mold, we produce an elastomeric pattern / stamp. One variation of soft lithography is “microcontact printing”. The elastomer stamp is coated with an ink and pressed against a surface. The pattern peaks contact the surface and a thin layer of about 1 monolayer of the ink is transfered. This thin film monolayer acts as the mask for selective wet etching. A second variation is “microtransfer molding”, in which the recesses of the elastomer mold are filled with liquid polymer precursor and pushed against a surface. Once the polymer cures, we peel off the mold, leaving behind the desired pattern. Lastly a third variation is “micromolding in capillaries”, where the elastomer stamp pattern consists of channels that use capillary forces to wick a liquid polymer into the stamp from its side. Basically, a small amount of the liquid polymer is placed adjacent to the capillary channels and the capillary forces pull the liquid into the channels. Excess liquid polymer is removed and polymer inside the channels is allowed to cure. The stamp mold is peeled off and the product is ready. You can find more details about our soft lithography micromanufacturing techniques by clicking on the related submenu on the side of this page. If you are mostly interested in our engineering and research & development capabilities instead of manufacturing capabilities, then we invite you to also visit our engineering website http://www.ags-engineering.com Read More Read More Read More Read More Read More Read More Read More Read More Read More CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Clutch, Brake, Friction Clutches, Belt Clutch, Dog & Hydraulic Clutch

    Clutch, Brake, Friction Clutches, Belt Clutch, Dog Clutch, Hydraulic Clutch, Electromagnetic Clutch, Overruning Clutch, Wrap Spring Clutch, Frictional Brake Clutch & Brake Assembly CLUTCHES are a type of coupling that permit shafts to be connected or disconnected as desired. A CLUTCH is a mechanical device that transmits power and motion from one component (the driving member) to another (the driven member) when engaged, but can be disengaged when desired. Clutches are used whenever the transmission of power or motion needs to be controlled either in amount or over time (for example electric screwdrivers use clutches to limit how much torque is transmitted through; automobile clutches control transmitted engine power to the wheels). In simplest applications, clutches are employed in devices which have two rotating shafts (drive shaft or line shaft). In these devices, one shaft is typically attached to a motor or other type of power unit (the driving member) while the other shaft (the driven member) provides output power for work to be done. As an example, in a torque-controlled drill, one shaft is driven by a motor and the other drives a drill chuck. The clutch connects the two shafts so that they may be locked together and spin at the same speed (engaged), locked together but spinning at different speeds (slipping), or unlocked and spinning at different speeds (disengaged). We offer the following types of clutches: FRICTION CLUTCHES: - Multiple plate clutch - Wet & dry - Centrifugal - Cone clutch - Torque limiter BELT CLUTCH DOG CLUTCH HYDRAULIC CLUTCH ELECTROMAGNETIC CLUTCH OVERRUNING CLUTCH (FREEWHEEL) WRAP-SPRING CLUTCH Contact us for clutch assemblies to be used in your manufacturing line for motorcycles, automobiles, trucks, trailers, lawn movers, industrial machines...etc. BRAKES: A BRAKE is a mechanical device inhibiting motion. Most commonly brakes use friction to convert kinetic energy into heat, though other methods of energy conversion may also be employed. Regenerative braking converts much of the energy to electrical energy, which may be stored in batteries for later use. Eddy current brakes use magnetic fields to convert kinetic energy into electric current in the brake disc, fin, or rail, which is subsequently converted into heat. Other methods of brake systems convert kinetic energy into potential energy in such stored forms as pressurized air or pressurized oil. There are braking methods that transform kinetic energy into different forms, such as transferring the energy to a rotating flywheel. Generic Types of brakes we offer are: FRICTIONAL BRAKE PUMPING BRAKE ELECTROMAGNETIC BRAKE We have the capability to design and fabricate custom clutch and break systems tailored to your application. - Download our catalog for Powder Clutches and Brakes and Tension Control System by CLICKING HERE - Download our catalog for Non-Excited Brakes by CLICKING HERE Click on the links below to download our catalog for: - Air Disk and Air Shaft Brakes & Clutches and Safety Disc Spring Brakes - pages 1 to 35 - Air Disk and Air Shaft Brakes & Clutches and Safety Disc Spring Brakes - pages 36 to 71 - Air Disk and Air Shaft Brakes & Clutches and Safety Disc Spring Brakes - pages 72 to 86 - Electromagnetic Clutch and Brakes CLICK Product Finder-Locator Service PREVIOUS PAGE

bottom of page