top of page

Search Results

164 results found with an empty search

  • Active Optical Components, Lasers, Photodetectors, LED Dies, Laser

    Active Optical Components - Lasers - Photodetectors - LED Dies - Photomicrosensor - Fiber Optic - AGS-TECH Inc. - USA Active Optical Components Manufacturing & Assembly The ACTIVE OPTICAL COMPONENTS we manufacture and supply are: • Lasers and photodetectors, PSD (Position Sensitive Detectors), quadcells and other optical sensors and sensor systems with electrical connections. Our active optical components span a large spectrum of wavelength regions. Whether your application is high power lasers for industrial cutting, drilling, welding...etc, or medical lasers for surgery or diagnostics, or telecommunication lasers or detectors suitable for the ITU grid, we are your one-stop source. Below are downloadable brochures for some of our off-the-shelf active optical components and devices. If you cannot find what you are searching for, please contact us and we will have something to offer you. We do also custom manufacture active optical components and assemblies according to your application and requirements. • Among the many achievements of our optical engineers is the concept design, optical and opto-mechanical design of optical scan head for GS 600 LASER DRILLING SYSTEM with dual galvo scanners and self compensating alignment. Since its introduction, the GS600 family has become the system of choice for many leading high volume manufacturers around the World. Using optical design tools such as ZEMAX and CodeV, our optical engineers are ready to design your custom systems. If you only have SOLIDWORKS files for your design, don't worry, send them and we will work out and create the optical design files, optimize & simulate and have you approve the final design. Even a hand sketch, a mockup, a prototype or sample is sufficient in most cases for us to take care of your product development needs. Click on blue highlighted text to download brochures and catalogs of some off-the-shelf-ready active optical products: Active fiber optic products Comprehensive electric & electronic components catalog for off-shelf products Hikrobot Machine Vision Products Hikrobot Smart Machine Vision Products Hikrobot Machine Vision Standard Products Hikvision Logistic Vision Solutions LED dies and chips Photomicrosensors Photosensors Photosensors and Photomicrosensors Sockets and Accessories Private Label Medical Endoscopes and Visualization Systems (We can put your company name and logo on these) Sensors & Analytical Measurement Systems for Optical OEM Applications in Liquid Analysis (We private label these with your brand name and logo if you wish. We can customize sensors to your needs and applications, OEM option available) Dowload brochure for our DESIGN PARTNERSHIP PROGRAM R e ference Code: OICASANLY CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Pneumatic and Hydraulic Actuators - Accumulators - AGS-TECH Inc. - NM

    Pneumatic and Hydraulic Actuators - Accumulators - AGS-TECH Inc. - NM Actuators Accumulators AGS-TECH is a leading manufacturer and supplier of PNEUMATIC and HYDRAULIC ACTUATORS for assembly, packaging, robotics, and industrial automation. Our actuators are known for performance, flexibility, and extremely long life, and welcome the challenge of many different types of operating environments. We also supply HYDRAULIC ACCUMULATORS which are devices in which potential energy is stored in the form of a compressed gas or spring, or by a raised weight to be used to exert a force against a relatively incompressible fluid. Our fast delivery of pneumatic and hydraulic actuators and accumulators will reduce your inventory costs and keep your production schedule on track. ACTUATORS: An actuator is a type of motor responsible for moving or controlling a mechanism or system. Actuators are operated by a source of energy. Hydraulic actuators are operated by hydraulic fluid pressure, and pneumatic actuators are operated by pneumatic pressure, and convert that energy into motion. Actuators are mechanisms by which a control system acts upon an environment. The control system may be a fixed mechanical or electronic system, a software-based system, a person, or any other input. Hydraulic actuators consist of cylinder or fluid motor that uses hydraulic power to facilitate mechanical operation. The mechanical motion may give an output in terms of linear, rotary or oscillatory motion. Since liquids are nearly impossible to compress, hydraulic actuators can exert considerable forces. Hydraulic actuators may have however limited acceleration. The actuator’s hydraulic cylinder consists of a hollow cylindrical tube along which a piston can slide. In single acting hydraulic actuators the fluid pressure is applied to just one side of the piston. The piston can move in only one direction, and a spring is generally used to give the piston a return stroke. Double acting actuators are used when pressure is applied on each side of the piston; any difference in pressure between the two sides of the piston moves the piston to one side or the other. Pneumatic actuators convert energy formed by vacuum or compressed air at high pressure into either linear or rotary motion. Pneumatic actuators enable large forces to be produced from relatively small pressure changes. These forces are often used with valves to move diaphragms to affect the flow of liquid through the valve. Pneumatic energy is desirable because it can respond quickly in starting and stopping as the power source does not need to be stored in reserve for operation. Industrial applications of actuators include automation, logic and sequence control, holding fixtures, and high-power motion control. Automotive applications of actuators on the other hand include power steering, power brakes, hydraulic brakes, and ventilation controls. Aerospace applications of actuators include flight-control systems, steering-control systems, air conditioning, and brake-control systems. COMPARING PNEUMATIC and HYDRAULIC ACTUATORS: Pneumatic linear actuators consist of a piston inside a hollow cylinder. Pressure from an external compressor or manual pump moves the piston inside the cylinder. As pressure is increased, the actuator’s cylinder moves along the axis of the piston, creating a linear force. The piston returns to its original position by either a spring-back force or fluid being supplied to the other side of the piston. Hydraulic linear actuators function similar to pneumatic actuators, but an incompressible liquid from a pump rather than pressurized air moves the cylinder. The benefits of pneumatic actuators come from their simplicity. The majority of pneumatic aluminum actuators have a maximum pressure rating of 150 psi with bore sizes ranging from 1/2 to 8 in., which can be converted into approximately 30 to 7,500 lb. of force. Steel pneumatic actuators on the other hand have a maximum pressure rating of 250 psi with bore sizes ranging from 1/2 to 14 in., and generate forces ranging from 50 to 38,465 lb. Pneumatic actuators generate precise linear motion by providing accuracies such as 0.1 inches and repeatabilities within .001 inches. Typical applications of pneumatic actuators are areas of extreme temperatures such as -40 F to 250 F. Using air, pneumatic actuators avoid using hazardous materials. Pneumatic actuators meet explosion protection and machine safety requirements because they create no magnetic interference due to their lack of motors. The cost of pneumatic actuators is low compared to hydraulic actuators. Pneumatic actuators are also lightweight, require minimal maintenance, and have durable components. On the other hand there are disadvantages of pneumatic actuators: Pressure losses and air’s compressibility make pneumatics less efficient than other linear-motion methods. Operations at lower pressures will have lower forces and slower speeds. A compressor must run continuously and apply pressure even if nothing is moving. To be efficient, pneumatic actuators must be sized for a specific job and cannot be used for other applications. Accurate control and efficiency requires proportional regulators and valves, which is costly and complex. Even though the air is easily available, it can be contaminated by oil or lubrication, leading to downtime and maintenance. Compressed air is a consumable that needs to be purchased. Hydraulic actuators on the other hand are rugged and suited for high-force applications. They can produce forces 25 times greater than pneumatic actuators of equal size and operate with pressures of up to 4,000 psi. Hydraulic motors have high horsepower-to-weight ratios by 1 to 2 hp/lb greater than a pneumatic motor. Hydraulic actuators can hold force and torque constant without the pump supplying more fluid or pressure, because fluids are incompressible. Hydraulic actuators can have their pumps and motors located a considerable distance away with still minimal power losses. However hydraulics will leak fluid and result in less efficiency. Hydraulic fluid leaks lead to cleanliness problems and potential damage to surrounding components and areas. Hydraulic actuators require many companion parts, such as fluid reservoirs, motors, pumps, release valves, and heat exchangers, noise-reduction equipment. As a result hydraulic linear motion systems are large and difficult to accommodate. ACCUMULATORS: These are used in fluid power systems to accumulate energy and to smooth out pulsations. Hydraulic system that utilize accumulators can use smaller fluid pumps because accumulators store energy from the pump during low demand periods. This energy is available for instantaneous use, released upon demand at a rate many times greater than could be supplied by the pump alone. Accumulators can also act as surge or pulsation absorbers by cushioning hydraulic hammers, reducing shocks caused by rapid operation or sudden starting and stopping of power cylinders in a hydraulic circuit. There are four major types of accumulators: 1.) The weight loaded piston type accumulators, 2.) Diaphragm type accumulators, 3.) Spring type accumulators and the 4.) Hydropneumatic piston type accumulators. The weight loaded type is much larger and heavier for its capacity than modern piston and bladder types. Both the weight loaded type, and mechanical spring type are very seldom used today. The hydro-pneumatic type accumulators use a gas as a spring cushion in conjunction with a hydraulic fluid, the gas and fluid being separated by a thin diaphragm or a piston. Accumulators have the following functions: -Energy Storage -Absorbing Pulsations -Cushioning Operating Shocks -Supplementing Pump Delivery -Maintaining Pressure -Acting as Dispensers Hydro-pneumatic accumulators incorporate a gas in conjunction with a hydraulic fluid. The fluid has little dynamic power storage capability. However, the relative incompressibility of a hydraulic fluid makes it ideal for fluid power systems and provides quick response to power demand. The gas, on the other hand, a partner to the hydraulic fluid in the accumulator, can be compressed to high pressures and low volumes. Potential energy is stored in the compressed gas to be released when needed. In the piston type accumulators the energy in the compressed gas exerts pressure against the piston separating the gas and the hydraulic fluid. The piston in turn forces the fluid from the cylinder into the system and to the location where useful work needs to be accomplished. In most fluid power applications, pumps are used to generate the required power to be used or stored in a hydraulic system, and pumps deliver this power in a pulsating flow. The piston pump, as commonly used for higher pressures produces pulsations detrimental to a high pressure system. An accumulator properly located in the system will substantially cushion these pressure variations. In many fluid power applications the driven member of the hydraulic system stops suddenly, creating a pressure wave which is sent back through the system. This shock wave can develop peak pressures several times greater than normal working pressures and can be the source of system failure or disturbing noise. The gas cushioning effect in an accumulator will minimize these shock waves. An example of this application is the absorption of shock caused by suddenly stopping the loading bucket on a hydraulic front end loader. An accumulator, capable of storing power, can supplement the fluid pump in delivering power to the system. The pump stores potential energy in the accumulator during idle periods of the work cycle, and the accumulator transfers this reserve power back to the system when the cycle requires emergency or peak power. This enables a system to utilize smaller pumps, resulting in cost and power savings. Pressure changes are observed in hydraulic systems when the liquid is subjected to rising or falling temperatures. Also, there may be pressure drops due to leakage of hydraulic fluids. Accumulators compensate for such pressure changes by delivering or receiving a small amount of hydraulic liquid. In the event the main power source should fail or be stopped, accumulators would act as auxiliary power sources, maintaining pressure in the system. Lastly, accumulators mcan be used to dispense fluids under pressure, such as lubricating oils. Please click on highlighted text below to download our product brochures for actuators and accumulators: - Pneumatic Cylinders - YC Series Hydraulic Cyclinder - Accumulators from AGS-TECH Inc CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Computer Chassis, Racks, Shelves, 19 inch Rack, 23 inch Rack, Case

    Computer Chassis - Racks - Shelves - 19 inch Rack - 23 inch Rack - Computer and Instrument Case Manufacturing - AGS-TECH Inc. - New Mexico - USA Chassis,Racks,Mounts for Industrial Computers We offer you the most durable and reliable INDUSTRIAL COMPUTER CHASSIS, RACKS, MOUNTS, RACK MOUNT INSTRUMENTS and RACK MOUNTED SYSTEMS, SUBRACK, SHELF, 19 INCH & 23 INCH RACKS, FULL SİZE and HALF RACKS, OPEN and CLOSED RACK, MOUNTING HARDWARE, STRUCTURAL AND SUPPORT COMPONENTS, RAILS and SLIDES, TWO andFOUR POST RACKS that meet international and industry standards. Besides our off-the-shelf products, we are capable to build you any specially tailored chassis, racks and mounts. Some of the brand names we have in stock are BELKIN, HEWLETT PACKARD, KENDALL HOWARD, GREAT LAKES, APC, RITTAL, LIEBERT, RALOY, SHARK RACK, UPSITE TECHNOLOGIES. Here are brochures and catalogs of some industrial computer chassis, racks. Simply click on the respective blue text to download them: - Catalog for Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals - DFI-ITOX brand Industrial Chassis - 01 Series Instrument Case System-I from AGS-Electronics - 05 Series Instrument Case System-V from AGS-Electronics - 06 Series Plug-in Chassis from AGS-Electronics To choose a suitable Industrial Grade Chassis, Rack or Mount please go to our industrial computer store by CLICKING HERE. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM Here is some key terminology that should be useful for reference purposes: A RACK UNIT or U (less commonly referred to as RU) is a unit of measure used to describe the height of equipment intended for mounting into a 19-inch rack or a 23-inch rack (The 19-inch or 23-inch dimension refers to the width of the equipment mounting frame in the rack i.e. the width of the equipment that can be mounted inside the rack). One rack unit is 1.75 inches (44.45 mm) high. The size of a piece of rack-mounted equipment is frequently described as a number in ''U''. For example, one rack unit is often referred to as ''1U'', 2 rack units as ''2U'' and so on. A typical full size rack is 44U, which means it holds just over 6 feet of equipment. In computing and information technology, however, half-rack typically describes a unit that is 1U high and half the depth of a 4-post rack (such as a network switch, router, KVM switch, or server), such that two units can be mounted in 1U of space (one mounted at the front of the rack and one at the rear). When used to describe the rack enclosure itself, the term half-rack typically means a rack enclosure that is 24U tall. A front panel or filler panel in a rack is not an exact multiple of 1.75 inches (44.45 mm). To allow space between adjacent rack-mounted components, a panel is 1⁄32 inch (0.031 inch or 0.79 mm) less in height than the full number of rack units would imply. Thus, a 1U front panel would be 1.719 inches (43.66 mm) high. A 19-inch rack is a standardized frame or enclosure for mounting multiple equipment modules. Each module has a front panel that is 19 inches (482.6 mm) wide, including edges or ears that protrude on each side which allow the module to be fastened to the rack frame with screws. Equipment designed to be placed in a rack is typically described as rack-mount, rack-mount instrument, a rack mounted system, a rack mount chassis, subrack, rack mountable, or occasionally simply shelf. A 23-inch rack is used for housing telephone (primarily), computer, audio and other equipment though is less common than the 19-inch rack. The size notes the width of the faceplate for the installed equipment. The rack unit is a measure of vertical spacing and is common to both the 19 and 23-inch (580 mm) racks. Hole spacing is either on 1-inch (25 mm) centres (Western Electric standard), or the same as for 19-inch (480 mm) racks (0.625 inches / 15.9 millimetres spacing). CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Brushes, Brush Manufacturing, USA, AGS-TECH

    AGS-TECH Inc. supplies off-the-shelf as well as custom manufactured brushes. Many types are offered including industrial brush, agricultural brushes, municipal brushes, copper wire brush, zig zag brush, roller brush, side brushes, metal polishing brush, window cleaning brushes, heavy industrial scrubbing brush...etc. Brushes & Brush Manufacturing AGS-TECH has experts in the consultancy, design and manufacturing of brushes for cleaning and processing equipment manufacturers. We work with you to offer innovative custom brush design solutions. Brush prototypes are developed before volume production runs. We help you to design, develop and manufacture high quality brushes for optimal machine performance. Products can be produced almost at any dimensional specifications you prefer or is suitable for your application. Also the brush bristles can be of various lengths and materials. Both natural and synthetic bristles and materials are being used in our brushes depending on the application. Sometimes we are able to offer you an off-the-shelf brush that will fit your application and needs. Just let us know your needs and we are here to help you. Some of the types of brushes we are able to supply you are: Industrial Brushes Agricultural Brushes Vegetable Brushes Municipal Brushes Copper Wire Brush Zig Zag Brushes Roller Brush Side Brushes Roller Brushes Disk Brushes Circular Brushes Ring Brushes and Spacers Cleaning Brushes Conveyor Cleaning Brush Polishing Brushes Metal Polishing Brush Window Cleaning Brushes Glass Manufacturing Brushes Trommel Screen Brushes Strip Brushes Industrial Cylinder Brushes Brushes with Varying Bristle Lengths Variable & Adjustable Bristle Length Brushes Synthetic Fibers Brush Natural Fibers Brush Lath Brush Heavy Industrial Scrubbing Brushes Specialist Commercial Brushes If you do have detailed blueprints of brushes you need manufactured, that is perfect. Just send them to us for evaluation. If you do not have blueprints, no problem. A sample, a photo or a hand sketch of the brush may be sufficient initially for most projects. We will send you special templates to fill in your requirements and details so we can evaluate, design and manufacture your product correctly. In our templates we have questions on details such as: Brush face length Tube length Tube inside and outside diameters Disk inside and outside diameters Disk thickness Brush diameter Brush height Tuft diameter Density Material and color of bristles Bristle diameter Brush pattern & fill pattern (double row helical, double row chevron, full fill,….etc.) Brush drive of choice Applications for the brushes (food, pharmaceuticals, polishing of metals, industrial cleaning…etc.) With your brushes we can supply you accessories such as pad holders, hooked pads, necessary attachments, disk drives, drive coupling…etc. If you are unfamiliar with these brush specs, again no problem. We will guide you throughout the design process. PREVIOUS PAGE

  • Electronic Testers, Electrical Properties Testing, Oscilloscope, Pulse

    Electronic Testers - Electrical Test Equipment - Electrical Properties Testing - Oscilloscope - Signal Generator - Function Generator - Pulse Generator - Frequency Synthesizer - Multimeter Electrical & Electronic Test Equipment With the term ELECTRONIC TESTER we refer to test equipment that is used primarily for testing, inspection and analysis of electrical and electronic components and systems. We offer the most popular ones in the industry: POWER SUPPLIES & SIGNAL GENERATING DEVICES: POWER SUPPLY, SIGNAL GENERATOR, FREQUENCY SYNTHESIZER, FUNCTION GENERATOR, DIGITAL PATTERN GENERATOR, PULSE GENERATOR, SIGNAL INJECTOR METERS: DIGITAL MULTIMETERS, LCR METER, EMF METER, CAPACITANCE METER, BRIDGE INSTRUMENT, CLAMP METER, GAUSSMETER / TESLAMETER/ MAGNETOMETER, GROUND RESISTANCE METER ANALYZERS: OSCILLOSCOPES, LOGIC ANALYZER, SPECTRUM ANALYZER, PROTOCOL ANALYZER, VECTOR SIGNAL ANALYZER, TIME-DOMAIN REFLECTOMETER, SEMICONDUCTOR CURVE TRACER, NETWORK ANALYZER, PHASE ROTATION TESTER, FREQUENCY COUNTER You can purchase brand new, refurbished or used test equipment from us at the most competitive discounted prices. Simply choose the product from the downloadable catalogs and let us know the product name, product code and relevant information and we will send you our quote. Download by clicking on highlighted text: ANRITSU Electronic Measuring Instruments FLUKE Test Tools Catalog KEYSIGHT Basic Automotive Test Products KEYSIGHT Basic Instruments KEYSIGHT Bench and Power Products KEYSIGHT Network Analyzer Products KEYSIGHT Signal Generation Solutions KEYSIGHT Smart Bench Essentials Series Products KEYSIGHT High-Volume Traffic Generator Products KEYSIGHT Layer 4-7 Network Test Products KEYSIGHT Layer 2-3 Network Test Products KEYSIGHT Distribution Products Catalog MEGGER Low Voltage Test Tools Catalog MICROWAVE Flexible Cable Assembly MICROWAVE and MILIMETER WAVE Test Accessories Brochure (Cable assemblies, VNA Test Assemblies, Mechanical Calibration Kits, RF Coaxial Adapters, Test Port Adapters, DC Blocks, NMD Connectors....etc.) Private Label Hand Tools for Every Industry (This catalog contains a few electrical & electronic test instruments. We can private label these hand tools if you wish. In other words, we can put your company name, brand and label on them. This way you can promote your brand by reselling these to your customers.) ROHDE SCHWARZ Benchtop Power Supplies Ideal for labs and system racks, galvanic isolation, floating channels, constant voltage or current modes, protection functions, parallel and serial operation, low ripple/noise, remote sensing option ROHDE SCHWARZ Test Equipment Catalog (Oscilloscopes, Power Supplies, Signal Generators, Handheld Analyzers, Spectrum Analyzers, Vector Network Analyzers, Meters & Counters) TEKTRONIX Product Catalog for Test and Measurement Solutions VANDAL-PROOF IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com Let us briefly go over some of these equipment in everyday use throughout the industry: The electrical power supplies we supply for metrology purposes are discrete, benchtop and stand-alone devices. The ADJUSTABLE REGULATED ELECTRICAL POWER SUPPLIES are some of the most popular ones, because their output values can be adjusted and their output voltage or current is maintained constant even if there are variations in input voltage or load current. ISOLATED POWER SUPPLIES have power outputs that are electrically independent of their power inputs. Depending on their power conversion method, there are LINEAR and SWITCHING POWER SUPPLIES. The linear power supplies process the input power directly with all their active power conversion components working in the linear regions, whereas the switching power supplies have components working predominantly in non-linear modes (such as transistors) and convert power to AC or DC pulses before processing. Switching power supplies are generally more efficient than linear supplies because they lose less power due to shorter times their components spend in the linear operating regions. Depending on application, a DC or AC power is used. Other popular devices are PROGRAMMABLE POWER SUPPLIES, where voltage, current or frequency can be remotely controlled through an analog input or digital interface such as an RS232 or GPIB. Many of them have an integral microcomputer to monitor and control the operations. Such instruments are essential for automated testing purposes. Some electronic power supplies use current limiting instead of cutting off power when overloaded. Electronic limiting is commonly used on lab bench type instruments. SIGNAL GENERATORS are another widely used instruments in lab and industry, generating repeating or non-repeating analog or digital signals. Alternatively they are also called FUNCTION GENERATORS, DIGITAL PATTERN GENERATORS or FREQUENCY GENERATORS. Function generators generate simple repetitive waveforms such as sine waves, step pulses, square & triangular and arbitrary waveforms. With Arbitrary waveform generators the user can generate arbitrary waveforms, within published limits of frequency range, accuracy, and output level. Unlike function generators, which are limited to a simple set of waveforms, an arbitrary waveform generator allows the user to specify a source waveform in a variety of different ways. RF and MICROWAVE SIGNAL GENERATORS are used for testing components, receivers and systems in applications such as cellular communications, WiFi, GPS, broadcasting, satellite communications and radars. RF signal generators generally work between a few kHz to 6 GHz, while microwave signal generators operate within a much wider frequency range, from less than 1 MHz to at least 20 GHz and even up to hundreds of GHz ranges using special hardware. RF and microwave signal generators can be classified further as analog or vector signal generators. AUDIO-FREQUENCY SIGNAL GENERATORS generate signals in the audio-frequency range and above. They have electronic lab applications checking of the frequency response of audio equipment. VECTOR SIGNAL GENERATORS, sometimes also referred to as DIGITAL SIGNAL GENERATORS are capable of generating digitally-modulated radio signals. Vector signal generators can generate signals based on industry standards such as GSM, W-CDMA (UMTS) and Wi-Fi (IEEE 802.11). LOGIC SIGNAL GENERATORS are also called DIGITAL PATTERN GENERATOR. These generators produce logic types of signals, that is logic 1s and 0s in the form of conventional voltage levels. Logic signal generators are used as stimulus sources for functional validation & testing of digital integrated circuits and embedded systems. The devices mentioned above are for general-purpose use. There are however many other signal generators designed for custom specific applications. A SIGNAL INJECTOR is a very useful and quick troubleshooting tool for signal tracing in a circuit. Technicians can determine the faulty stage of a device such as a radio receiver very quickly. The signal injector can be applied to the speaker output, and if the signal is audible one can move to the preceding stage of the circuit. In this case an audio amplifier, and if the injected signal is heard again one can move the signal injection up the stages of the circuit until the signal is no longer audible. This will serve the purpose of locating the location of the problem. A MULTIMETER is an electronic measuring instrument combining several measurement functions in one unit. Generally, multimeters measure voltage, current, and resistance. Both digital and analog version are available. We offer portable hand-held multimeter units as well as laboratory-grade models with certified calibration. Modern multimeters can measure many parameters such as: Voltage (both AC / DC), in volts, Current (both AC / DC), in amperes, Resistance in ohms. Additionally, some multimeters measure: Capacitance in farads, Conductance in siemens, Decibels, Duty cycle as a percentage, Frequency in hertz, Inductance in henries, Temperature in degrees Celsius or Fahrenheit, using a temperature test probe. Some multimeters also include: Continuity tester; sounds when a circuit conducts, Diodes (measuring forward drop of diode junctions), Transistors (measuring current gain and other parameters), battery checking function, light level measuring function, acidity & Alkalinity (pH) measuring function and relative humidity measuring function. Modern multimeters are often digital. Modern digital multimeters often have an embedded computer to make them very powerful tools in metrology and testing. They include features such as:: •Auto-ranging, which selects the correct range for the quantity under test so that the most significant digits are shown. •Auto-polarity for direct-current readings, shows if the applied voltage is positive or negative. •Sample and hold, which will latch the most recent reading for examination after the instrument is removed from the circuit under test. •Current-limited tests for voltage drop across semiconductor junctions. Even though not a replacement for a transistor tester, this feature of digital multimeters facilitates testing diodes and transistors. •A bar graph representation of the quantity under test for better visualization of fast changes in measured values. •A low-bandwidth oscilloscope. •Automotive circuit testers with tests for automotive timing and dwell signals. •Data acquisition feature to record maximum and minimum readings over a given period, and to take a number of samples at fixed intervals. •A combined LCR meter. Some multimeters can be interfaced with computers, while some can store measurements and upload them to a computer. Yet another very useful tool, an LCR METER is a metrology instrument for measuring the inductance (L), capacitance (C), and resistance (R) of a component. The impedance is measured internally and converted for display to the corresponding capacitance or inductance value. Readings will be reasonably accurate if the capacitor or inductor under test does not have a significant resistive component of impedance. Advanced LCR meters measure true inductance and capacitance, and also the equivalent series resistance of capacitors and the Q factor of inductive components. The device under test is subjected to an AC voltage source and the meter measures the voltage across and the current through the tested device. From the ratio of voltage to current the meter can determine the impedance. The phase angle between the voltage and current is also measured in some instruments. In combination with the impedance, the equivalent capacitance or inductance, and resistance, of the device tested can be calculated and displayed. LCR meters have selectable test frequencies of 100 Hz, 120 Hz, 1 kHz, 10 kHz, and 100 kHz. Benchtop LCR meters typically have selectable test frequencies of more than 100 kHz. They often include possibilities to superimpose a DC voltage or current on the AC measuring signal. While some meters offer the possibility to externally supply these DC voltages or currents other devices supply them internally. An EMF METER is a test & metrology instrument for measuring electromagnetic fields (EMF). Majority of them measure the electromagnetic radiation flux density (DC fields) or the change in an electromagnetic field over time (AC fields). There are single axis and tri-axis instrument versions. Single axis meters cost less than tri-axis meters, but take longer to complete a test because the meter only measures one dimension of the field. Single axis EMF meters have to be tilted and turned on all three axes to complete a measurement. On the other hand, tri-axis meters measure all three axes simultaneously, but are more expensive. An EMF meter can measure AC electromagnetic fields, which emanate from sources such as electrical wiring, while GAUSSMETERS / TESLAMETERS or MAGNETOMETERS measure DC fields emitted from sources where direct current is present. The majority of EMF meters are calibrated to measure 50 and 60 Hz alternating fields corresponding to the frequency of US and European mains electricity. There are other meters which can measure fields alternating at as low as 20 Hz. EMF measurements can be broadband across a wide range of frequencies or frequency selective monitoring only the frequency range of interest. A CAPACITANCE METER is a test equipment used to measure capacitance of mostly discrete capacitors. Some meters display the capacitance only, whereas others also display leakage, equivalent series resistance, and inductance. Higher end test instruments use techniques such as inserting the capacitor-under-test into a bridge circuit. By varying the values of the other legs in the bridge so as to bring the bridge into balance, the value of the unknown capacitor is determined. This method ensures greater precision. The bridge may also be capable to measure series resistance and inductance. Capacitors over a range from picofarads to farads may be measured. Bridge circuits do not measure leakage current, but a DC bias voltage can be applied and the leakage measured directly. Many BRIDGE INSTRUMENTS can be connected to computers and data exchange be made to download readings or to control the bridge externally. Such bridge instruments aso offer go / no go testing for automation of tests in a fast paced production & quality control environment. Yet, another test instrument, a CLAMP METER is an electrical tester combining a voltmeter with a clamp type current meter. Most modern versions of clamp meters are digital. Modern clamp meters have most of the basic functions of a Digital Multimeter, but with the added feature of a current transformer built into the product. When you clamp the instrument’s “jaws” around a conductor carrying a large ac current, that current is coupled through the jaws, similar to the iron core of a power transformer, and into a secondary winding which is connected across the shunt of the meter’s input, the principle of operation resembling much that of a transformer. A much smaller current is delivered to the meter’s input due to the ratio of the number of secondary windings to the number of primary windings wrapped around the core. The primary is represented by the one conductor around which the jaws are clamped. If the secondary has 1000 windings, then the secondary current is 1/1000 the current flowing in the primary, or in this case the conductor being measured. Thus, 1 amp of current in the conductor being measured would produce 0.001 amps of current at the input of the meter. With clamp meters much larger currents can be easily measured by increasing the number of turns in the secondary winding. As with most of our test equipment, advanced clamp meters offer logging capability. GROUND RESISTANCE TESTERS are used for testing the earth electrodes and the soil resistivity. The instrument requirements depend on the range of applications. Modern clamp-on ground testing instruments simplify ground loop testing and enable non-intrusive leakage current measurements. Among the ANALYZERS we sell are OSCILLOSCOPES without doubt one of the most widely used equipment. An oscilloscope, also called an OSCILLOGRAPH, is a type of electronic test instrument that allows observation of constantly varying signal voltages as a two-dimensional plot of one or more signals as a function of time. Non-electrical signals like sound and vibration can also be converted to voltages and displayed on oscilloscopes. Oscilloscopes are used to observe the change of an electrical signal over time, the voltage and time describe a shape which is continuously graphed against a calibrated scale. Observation and analysis of the waveform reveals us properties such as amplitude, frequency, time interval, rise time, and distortion. Oscilloscopes can be adjusted so that repetitive signals can be observed as a continuous shape on the screen. Many oscilloscopes have storage function that allows single events to be captured by the instrument and displayed for a relatively long time. This allows us to observe events too fast to be directly perceptible. Modern oscilloscopes are lightweight, compact and portable instruments. There are also miniature battery-powered instruments for field service applications. Laboratory grade oscilloscopes are generally bench-top devices. There is a vast variety of probes and input cables for use with oscilloscopes. Please contact us in case you need advice about which one to use in your application. Oscilloscopes with two vertical inputs are called dual-trace oscilloscopes. Using a single-beam CRT, they multiplex the inputs, usually switching between them fast enough to display two traces apparently at once. There are also oscilloscopes with more traces; four inputs are common among these. Some multi-trace oscilloscopes use the external trigger input as an optional vertical input, and some have third and fourth channels with only minimal controls. Modern oscilloscopes have several inputs for voltages, and thus can be used to plot one varying voltage versus another. This is used for example for graphing I-V curves (current versus voltage characteristics) for components such as diodes. For high frequencies and with fast digital signals the bandwidth of the vertical amplifiers and sampling rate must be high enough. For-general purpose use a bandwidth of at least 100 MHz is usually sufficient. A much lower bandwidth is sufficient for audio-frequency applications only. Useful range of sweeping is from one second to 100 nanoseconds, with appropriate triggering and sweep delay. A well-designed, stable, trigger circuit is required for a steady display. The quality of the trigger circuit is key for good oscilloscopes. Another key selection criteria is the sample memory depth and sample rate. Basic level modern DSOs now have 1MB or more of sample memory per channel. Often this sample memory is shared between channels, and can sometimes only be fully available at lower sample rates. At the highest sample rates the memory may be limited to a few 10's of KB. Any modern ''real-time'' sample rate DSO will have typically 5-10 times the input bandwidth in sample rate. So a 100 MHz bandwidth DSO would have 500 Ms/s - 1 Gs/s sample rate. Greatly increased sample rates have largely eliminated the display of incorrect signals that was sometimes present in the first generation of digital scopes. Most modern oscilloscopes provide one or more external interfaces or buses such as GPIB, Ethernet, serial port, and USB to allow remote instrument control by external software. Here is a list of different oscilloscope types: CATHODE RAY OSCILLOSCOPE DUAL-BEAM OSCILLOSCOPE ANALOG STORAGE OSCILLOSCOPE DIGITAL OSCILLOSCOPES MIXED-SIGNAL OSCILLOSCOPES HANDHELD OSCILLOSCOPES PC-BASED OSCILLOSCOPES A LOGIC ANALYZER is an instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, assembly language. Logic Analyzers have advanced triggering capabilities, and are useful when the user needs to see the timing relationships between many signals in a digital system. MODULAR LOGIC ANALYZERS consist of both a chassis or mainframe and logic analyzer modules. The chassis or mainframe contains the display, controls, control computer, and multiple slots into which the data-capturing hardware is installed. Each module has a specific number of channels, and multiple modules can be combined to obtain a very high channel count. The ability to combine multiple modules to obtain a high channel count and the generally higher performance of modular logic analyzers makes them more expensive. For the very high end modular logic analyzers, the users may need to provide their own host PC or purchase an embedded controller compatible with the system. PORTABLE LOGIC ANALYZERS integrate everything into a single package, with options installed at the factory. They generally have lower performance than modular ones, but are economical metrology tools for general purpose debugging. In PC-BASED LOGIC ANALYZERS, the hardware connects to a computer through a USB or Ethernet connection and relays the captured signals to the software on the computer. These devices are generally much smaller and less expensive because they make use of a personal computer’s existing keyboard, display and CPU. Logic analyzers can be triggered on a complicated sequence of digital events, then capture large amounts of digital data from the systems under test. Today specialized connectors are in use. The evolution of logic analyzer probes has led to a common footprint that multiple vendors support, which provides added freedom to end users: Connectorless technology offered as several vendor-specific trade names such as Compression Probing; Soft Touch; D-Max is being used. These probes provide a durable, reliable mechanical and electrical connection between the probe and the circuit board. A SPECTRUM ANALYZER measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of signals. There are optical and acoustical spectrum analyzers as well, but here we will discuss only electronic analyzers that measure and analyze electrical input signals. The spectra obtained from electrical signals provides us information about frequency, power, harmonics, bandwidth…etc. The frequency is displayed on the horizonal axis and the signal amplitude on the vertical. Spectrum analyzers are widely used in the electronics industry for the analyses of the frequency spectrum of radio frequency, RF and audio signals. Looking at the spectrum of a signal we are able to reveal elements of the signal, and the performance of the circuit producing them. Spectrum analyzers are able to make a large variety of measurements. Looking at the methods used to obtain the spectrum of a signal we can categorize the spectrum analyzer types. - A SWEPT-TUNED SPECTRUM ANALYZER uses a superheterodyne receiver to down-convert a portion of the input signal spectrum (using a voltage-controlled oscillator and a mixer) to the center frequency of a band-pass filter. With a superheterodyne architecture, the voltage-controlled oscillator is swept through a range of frequencies, taking advantage of the full frequency range of the instrument. Swept-tuned spectrum analyzers are descended from radio receivers. Therefore swept-tuned analyzers are either tuned-filter analyzers (analogous to a TRF radio) or superheterodyne analyzers. In fact, in their simplest form, you could think of a swept-tuned spectrum analyzer as a frequency-selective voltmeter with a frequency range that is tuned (swept) automatically. It is essentially a frequency-selective, peak-responding voltmeter calibrated to display the rms value of a sine wave. The spectrum analyzer can show the individual frequency components that make up a complex signal. However it does not provide phase information, only magnitude information. Modern swept-tuned analyzers (superheterodyne analyzers, in particular) are precision devices that can make a wide variety of measurements. However, they are primarily used to measure steady-state, or repetitive, signals because they can't evaluate all frequencies in a given span simultaneously. The ability to evaluate all frequencies simultaneously is possible with only the real-time analyzers. - REAL-TIME SPECTRUM ANALYZERS: A FFT SPECTRUM ANALYZER computes the discrete Fourier transform (DFT), a mathematical process that transforms a waveform into the components of its frequency spectrum, of the input signal. The Fourier or FFT spectrum analyzer is another real-time spectrum analyzer implementation. The Fourier analyzer uses digital signal processing to sample the input signal and convert it to the frequency domain. This conversion is done using the Fast Fourier Transform (FFT). The FFT is an implementation of the Discrete Fourier Transform, the math algorithm used for transforming data from the time domain to the frequency domain. Another type of real-time spectrum analyzers, namely the PARALLEL FILTER ANALYZERS combine several bandpass filters, each with a different bandpass frequency. Each filter remains connected to the input at all times. After an initial settling time, the parallel-filter analyzer can instantaneously detect and display all signals within the analyzer's measurement range. Therefore, the parallel-filter analyzer provides real-time signal analysis. Parallel-filter analyzer is fast, it measures transient and time-variant signals. However, the frequency resolution of a parallel-filter analyzer is much lower than most swept-tuned analyzers, because the resolution is determined by the width of the bandpass filters. To get fine resolution over a large frequency range, you would need many many individual filters, making it costly and complex. This is why most parallel-filter analyzers, except the simplest ones in the market are expensive. - VECTOR SIGNAL ANALYSIS (VSA) : In the past, swept-tuned and superheterodyne spectrum analyzers covered wide frequency ranges from audio, thru microwave, to millimeter frequencies. In addition, digital signal processing (DSP) intensive fast Fourier transform (FFT) analyzers provided high-resolution spectrum and network analysis, but were limited to low frequencies due to the limits of analog-to-digital conversion and signal processing technologies. Today's wide-bandwidth, vector-modulated, time-varying signals benefit greatly from the capabilities of FFT analysis and other DSP techniques. Vector signal analyzers combine superheterodyne technology with high speed ADC's and other DSP technologies to offer fast high-resolution spectrum measurements, demodulation, and advanced time-domain analysis. The VSA is especially useful for characterizing complex signals such as burst, transient, or modulated signals used in communications, video, broadcast, sonar and ultrasound imaging applications. According to form factors, spectrum analyzers are grouped as benchtop, portable, handheld and networked. Benchtop models are useful for applications where the spectrum analyzer can be plugged into AC power,such as in a lab environment or manufacturing area. Bench top spectrum analyzers generally offer better performance and specifications than the portable or handheld versions. However they are generally heavier and have several fans for cooling. Some BENCHTOP SPECTRUM ANALYZERS offer optional battery packs, allowing them to be used away from a mains outlet. Those are referred to as a PORTABLE SPECTRUM ANALYZERS. Portable models are useful for applications where the spectrum analyzer needs to be taken outside to make measurements or carried while in use. A good portable spectrum analyzer is expected to offer optional battery-powered operation to allow the user to work in places without power outlets, a clearly viewable display to allow the screen to be read in bright sunlight, darkness or dusty conditions, light weight. HANDHELD SPECTRUM ANALYZERS are useful for applications where the spectrum analyzer needs to be very light and small. Handheld analyzers offer a limited capability as compared to larger systems. Advantages of handheld spectrum analyzers are however their very low power consumption, battery-powered operation while in the field to allow the user to move freely outside, very small size & light weight. Finally, NETWORKED SPECTRUM ANALYZERS do not include a display and they are designed to enable a new class of geographically-distributed spectrum monitoring and analysis applications. The key attribute is the ability to connect the analyzer to a network and monitor such devices across a network. While many spectrum analyzers have an Ethernet port for control, they typically lack efficient data transfer mechanisms and are too bulky and/or expensive to be deployed in such a distributed manner. The distributed nature of such devices enable geo-location of transmitters, spectrum monitoring for dynamic spectrum access and many other such applications. These devices are able to synchronize data captures across a network of analyzers and enable Network-efficient data transfer for a low cost. A PROTOCOL ANALYZER is a tool incorporating hardware and/or software used to capture and analyze signals and data traffic over a communication channel. Protocol analyzers are mostly used for measuring performance and troubleshooting. They connect to the network to calculate key performance indicators to monitor the network and speed-up troubleshooting activities. A NETWORK PROTOCOL ANALYZER is a vital part of a network administrator's toolkit. Network protocol analysis is used to monitor the health of network communications. To find out why a network device is functioning in a certain way, administrators use a protocol analyzer to sniff the traffic and expose the data and protocols that pass along the wire. Network protocol analyzers are used to - Troubleshoot hard-to-solve problems - Detect and identify malicious software / malware. Work with an Intrusion Detection System or a honeypot. - Gather information, such as baseline traffic patterns and network-utilization metrics - Identify unused protocols so that you can remove them from the network - Generate traffic for penetration testing - Eavesdrop on traffic (e.g., locate unauthorized Instant Messaging traffic or wireless Access Points) A TIME-DOMAIN REFLECTOMETER (TDR) is an instrument that uses time-domain reflectometry to characterize and locate faults in metallic cables such as twisted pair wires and coaxial cables, connectors, printed circuit boards,….etc. Time-Domain Reflectometers measure reflections along a conductor. In order to measure them, the TDR transmits an incident signal onto the conductor and looks at its reflections. If the conductor is of a uniform impedance and is properly terminated, then there will be no reflections and the remaining incident signal will be absorbed at the far end by the termination. However, if there is an impedance variation somewhere, then some of the incident signal will be reflected back to the source. The reflections will have the same shape as the incident signal, but their sign and magnitude depend on the change in impedance level. If there is a step increase in the impedance, then the reflection will have the same sign as the incident signal and if there is a step decrease in impedance, the reflection will have the opposite sign. The reflections are measured at the output/input of the Time-Domain Reflectometer and displayed as a function of time. Alternatively, the display can show the transmission and reflections as a function of cable length because the speed of signal propagation is almost constant for a given transmission medium. TDRs can be used to analyze cable impedances and lengths, connector and splice losses and locations. TDR impedance measurements provide designers the opportunity to perform signal integrity analysis of system interconnects and accurately predict the digital system performance. TDR measurements are widely used in board characterization work. A circuit board designer can determine the characteristic impedances of board traces, compute accurate models for board components, and predict board performance more accurately. There are many other areas of application for time-domain reflectometers. A SEMICONDUCTOR CURVE TRACER is a test equipment used to analyze the characteristics of discrete semiconductor devices such as diodes, transistors, and thyristors. The instrument is based on oscilloscope, but contains also voltage and current sources that can be used to stimulate the device under test. A swept voltage is applied to two terminals of the device under test, and the amount of current that the device permits to flow at each voltage is measured. A graph called V-I (voltage versus current) is displayed on the oscilloscope screen. Configuration includes the maximum voltage applied, the polarity of the voltage applied (including the automatic application of both positive and negative polarities), and the resistance inserted in series with the device. For two terminal devices like diodes, this is sufficient to fully characterize the device. The curve tracer can display all of the interesting parameters such as the diode's forward voltage, reverse leakage current, reverse breakdown voltage,…etc. Three-terminal devices such as transistors and FETs also use a connection to the control terminal of the device being tested such as the Base or Gate terminal. For transistors and other current based devices, the base or other control terminal current is stepped. For field effect transistors (FETs), a stepped voltage is used instead of a stepped current. By sweeping the voltage through the configured range of main terminal voltages, for each voltage step of the control signal, a group of V-I curves is generated automatically. This group of curves makes it very easy to determine the gain of a transistor, or the trigger voltage of a thyristor or TRIAC. Modern semiconductor curve tracers offer many attractive features such as intuitive Windows based user interfaces, I-V, C-V and pulse generation, and pulse I-V, application libraries included for every technology…etc. PHASE ROTATION TESTER / INDICATOR: These are compact and rugged test instruments to identify phase sequence on three-phase systems and open/de-energized phases. They are ideal for installing rotating machinery, motors and for checking generator output. Among the applications are the identification of proper phase sequences, detection of missing wire phases, determination of proper connections for rotating machinery, detection of live circuits. A FREQUENCY COUNTER is a test instrument that is used for measuring frequency. Frequency counters generally use a counter which accumulates the number of events occurring within a specific period of time. If the event to be counted is in electronic form, simple interfacing to the instrument is all that is needed. Signals of higher complexity may need some conditioning to make them suitable for counting. Most frequency counters have some form of amplifier, filtering and shaping circuitry at the input. Digital signal processing, sensitivity control and hysteresis are other techniques to improve performance. Other types of periodic events that are not inherently electronic in nature will need to be converted using transducers. RF frequency counters operate on the same principles as lower frequency counters. They have more range before overflow. For very high microwave frequencies, many designs use a high-speed prescaler to bring the signal frequency down to a point where normal digital circuitry can operate. Microwave frequency counters can measure frequencies up to almost 100 GHz. Above these high frequencies the signal to be measured is combined in a mixer with the signal from a local oscillator, producing a signal at the difference frequency, which is low enough for direct measurement. Popular interfaces on frequency counters are RS232, USB, GPIB and Ethernet similar to other modern instruments. In addition to sending measurement results, a counter can notify the user when user-defined measurement limits are exceeded. For details and other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Fiber Optic Components, Splicing Enclosures, FTTH Node, CATV Products

    Fiber Optic Components - Splicing Enclosures - FTTH Node - Fiber Distribution Box - Optical Platform - CATV Products - Telecommunication Optics - AGS-TECH Inc. Fiber Optic Products We supply: • Fiber optic connectors, adapters, terminators, pigtails, patchcords, connector faceplates, shelves, communication racks, fiber distribution box, splicing enclosure, FTTH node, optical platform, fiber optic taps, splitters-combiners, fixed and variable optical attenuators, optical switch, DWDM, MUX/DEMUX, EDFA, Raman amplifiers and other amplifiers, isolator, circulator, gain flattener, custom fiberoptic assembly for telecommunication systems, optical waveguide devices, CATV products • Lasers and photodetectors, PSD (Position Sensitive Detectors), quadcells • Fiber optic assemblies for industrial applications (illumination, light delivery or inspection of pipe interiors, crevices, cavities, body interiors....). • Fiberoptic assemblies for medical applications (see our site http://www.agsmedical.com for medical endoscopes and couplers). Among the products our engineers have developed is a super slim 0.6 mm diameter flexible video endoscope, and a fiber end inspection interferometer. The interferometer was developed by our engineers for in-process and final inspection in manufacturing of fiber connectors. We use special bonding and attachment techniques and materials for rigid, reliable and long life assemblies. Even under extensive environmental cycling such as high temperature/low temperature; high humidity/low humidity our assemblies remain intact and keep working. Download our catalog for passive fiber optic components Download our catalog for active fiber optic products Download our catalog for free space optical components and assemblies Private Label Medical Endoscopes and Visualization Systems (We can put your company name and logo on these) CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Optical Connectors, Adapters, Terminators, Pigtails, Patchcords, Fiber

    Optical Connectors, Adapters, Terminators, Pigtails, Patchcords, Fiber Distribution Box, AGS-TECH Inc. - USA Optical Connectors & Interconnect Products We supply: • Optical connector assembly, adapters, terminators, pigtails, patchcords, connector faceplates, shelves, communication racks, fiber distribution box, FTTH node, optical platform. We have optical connector assembly and interconnection components for telecommunication, visible light transmission for illumination, endoscope, fiberscope and more. In recent years these optical interconnect products have become commodities and you can purchase these from us for a fraction of the prices you are probably paying now. Only those who are smart to keep procurement costs down can survive in today's global economy. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Industrial Workstations, Industrial Computer, Micro Computers,AGS-TECH

    Industrial Workstations - Industrial Computer - Micro Computers - AGS-TECH Inc. - NM - USA Industrial Workstations & Micro Computers A WORKSTATION is a high-end MICROCOMPUTER designed and used for technical or scientific applications. The intention is that they are used by one person at a time, and are commonly connected to a local area network (LAN) and run multi-user operating systems. The term workstation has also been used by many to refer to a mainframe computer terminal or a PC connected to a network. In the past, workstations had offered higher performance than desktop computers, especially with respect to CPU and graphics, memory capacity and multitasking capability. Workstations are optimized for the visualization and manipulation of different types of complex data such as 3D mechanical design, engineering simulation (such as computational fluid dynamics), animation and rendering of images, mathematical plots…etc. Consoles consist at least of a high resolution display, a keyboard and a mouse, but may also offer multiple displays, graphics tablets, 3D mice (devices for manipulation and navigation of 3D objects and scenes), etc. Workstations are the first segment of the computer market to present advanced accessories and collaboration tools. Catalog for Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals To choose a suitable Industrial Workstation for your project, please go to our industrial computer store by CLICKING HERE. We offer both off-the-shelf as well as CUSTOM DESIGNED AND MANUFACTURED INDUSTRIAL WORKSTATIONS for industrial use. For mission critical applications we design and manufacture your industrial workstations according to your specific needs. We discuss your needs and requirements and provide you feedback and design proposals prior to building your computer system. We select one of a variety of rugged enclosures and determine the right computing horsepower that meets your needs. Industrial workstations can be supplied with active and passive PCI Bus backplanes that can be configured to support your ISA cards. Our spectrum covers from small 2 – 4 slot benchtop systems up to 2U, 4U or higher rackmount systems. We offer NEMA / IP RATED FULLY ENCLOSEDworkstations. Our industrial workstations outperform similar competitors systems in terms of the quality standards they meet, reliability, durability, long term use and are used in a variety of industries including the military, navy, marine, petroleum & gas, industrial processing, medical, pharmaceutical, transportation and logistics, semiconductor manufacturing. They are designed to be used in a wide variety of environmental conditions and industrial applications that require additional protection from dirt, dust, rain, sprayed water and other circumstances where corrosive materials such as salt water or caustic substances can be present. Our heavy-duty, ruggedly-built LCD computers and workstations are an ideal and dependable solution for use in poultry, fish or beef processing facilities where total wash-down with disinfectants occurs repeatedly, or in petrochemical refineries and offshore drilling platforms for oil & natural gas. Our NEMA 4X (IP66) models are gasket sealed and constructed from 316 stainless steel. Each system is engineered and assembled according to a completely sealed design using top quality 316 stainless steel for the outer enclosure and high-tech components inside each rugged PC. They come equipped with industrial grade bright TFT displays and resistive analog industrial touch-screens. Here we list some of the features of our popular industrial workstations: - Water and dust proof, corrosion resistant. Integrated with water proof keyboards - Rugged enclosed workstation, rugged motherboards - NEMA 4 (IP65) or NEMA 4X (IP66) environmental protection - Flexibility and options in mounting. Mounting types such as pedestal, bulkhead…etc. - Direct or KVM cabling to host - Powered by Intel Dual-Core or Atom processors - SATA fast access disk drive or solid state media - Windows or Linux operating systems - Expandability - Extended operational temperatures - Depending on customer preferences, input connectors can be located on the bottom, side or rear. - Models available in 15.0”, 17” & 19.0” - Superior sunlight readability - Integrated purge system for C1D1 applications as well as non-purged C1D2 designs - UL, CE, FC, RoHS, MET compliances Dowload brochure for our DESIGN PARTNERSHIP PROGRAM CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Micromanufacturing, Surface & Bulk Micromachining, Microscale, MEMS

    Micromanufacturing - Surface & Bulk Micromachining - Microscale Manufacturing - MEMS - Accelerometers - AGS-TECH Inc. Microscale Manufacturing / Micromanufacturing / Micromachining / MEMS MICROMANUFACTURING, MICROSCALE MANUFACTURING, MICROFABRICATION or MICROMACHINING refers to our processes suitable for making tiny devices and products in the micron or microns of dimensions. Sometimes the overall dimensions of a micromanufactured product may be larger, but we still use this term to refer to the principles and processes that are involved. We use the micromanufacturing approach to make the following types of devices: Microelectronic Devices: Typical examples are semiconductor chips that function based on electrical & electronic principles. Micromechanical Devices: These are products that are purely mechanical in nature such as very small gears and hinges. Microelectromechanical Devices: We use micromanufacturing techniques to combine mechanical, electrical and electronic elements at very small length scales. Most of our sensors are in this category. Microelectromechanical Systems (MEMS): These microelectromechanical devices also incorporate an integrated electrical system in one product. Our popular commercial products in this category are MEMS accelerometers, air-bag sensors and digital micromirror devices. Depending on the product to be fabricated, we deploy one of the following major micromanufacturing methods: BULK MICROMACHINING: This is a relatively older method which uses orientation-dependent etches on single-crystal silicon. The bulk micromachining approach is based on etching down into a surface, and stopping on certain crystal faces, doped regions, and etchable films to form the required structure. Typical products we are capable of micromanufacturing using bulk micromachining technique are: - Tiny cantilevers - V-groves in silicon for alignment and fixation of optical fibers. SURFACE MICROMACHINING: Unfortunately bulk micromachining is restricted to single-crystal materials, since polycrystalline materials will not machine at different rates in different directions using wet etchants. Therefore surface micromachining stands out as an alternative to bulk micromachining. A spacer or sacrificial layer such as phosphosilicate glass is deposited using CVD process onto a silicon substrate. Generally speaking, structural thin film layers of polysilicon, metal, metal alloys, dielectrics are deposited onto the spacer layer. Using dry etching techniques, the structural thin film layers are patterned and wet etching is used to remove the sacrificial layer, thereby resulting in free-standing structures such as cantilevers. Also possible is using combinations of bulk and surface micromachining techniques for turning some designs into products. Typical products suitable for micromanufacturing using a combination of the above two techniques: - Submilimetric size microlamps (in the order of 0.1 mm size) - Pressure sensors - Micropumps - Micromotors - Actuators - Micro-fluid-flow devices Sometimes, in order to obtain high vertical structures, micromanufacturing is performed on large flat structures horizontally and then the structures are rotated or folded into an upright position using techniques such as centrifuging or microassembly with probes. Yet very tall structures can be obtained in single crystal silicon using silicon fusion bonding and deep reactive ion etching. Deep Reactive Ion Etching (DRIE) micromanufacturing process is carried out on two separate wafers, then aligned and fusion bonded to produce very tall structures that would otherwise be impossible. LIGA MICROMANUFACTURING PROCESSES: The LIGA process combines X-ray lithography, electrodeposition, molding and generally involves the following steps: 1. A few hundreds of microns thick polymethylmetacrylate (PMMA) resist layer is deposited onto the primary substrate. 2. The PMMA is developed using collimated X-rays. 3. Metal is electrodeposited onto the primary substrate. 4. PMMA is stripped and a freestanding metal structure remains. 5. We use the remaining metal structure as a mould and perform injection molding of plastics. If you analyze the basic five steps above, using the LIGA micromanufacturing / micromachining techniques we can obtain: - Freestanding metal structures - Injection molded plastic structures - Using injection molded structure as a blank we can investment cast metal parts or slip-cast ceramic parts. The LIGA micromanufacturing / micromachining processes are time consuming and expensive. However LIGA micromachining produces these submicron precision molds which can be used to replicate the desired structures with distinct advantages. LIGA micromanufacturing can be used for example to fabricate very strong miniature magnets from rare-earth powders. The rare-earth powders are mixed with an epoxy binder and pressed to the PMMA mold, cured under high pressure, magnetized under strong magnetic fields and finally the PMMA is dissolved leaving behind the tiny strong rare-earth magnets which are one of the wonders of micromanufacturing / micromachining. We are also capable to develop multilevel MEMS micromanufacturing / micromachining techniques through wafer-scale diffusion bonding. Basically we can have overhanging geometries within MEMS devices, using a batch diffusion bonding and release procedure. For example we prepare two PMMA patterned and electroformed layers with the PMMA subsequently released. Next, the wafers are aligned face to face with guide pins and press fit together in a hot press. The sacrificial layer on one of the substrates is etched away which results in one of the layers bonded to the other. Other non-LIGA based micromanufacturing techniques are also available to us for the fabrication of various complex multilayer structures. SOLID FREEFORM MICROFABRICATION PROCESSES: Additive micromanufacturing is used for rapid prototyping. Complex 3D structures can be obtained by this micromachining method and no material removal takes place. Microstereolithography process uses liquid thermosetting polymers, photoinitiator and a highly focused laser source to a diameter as small as 1 micron and layer thicknesses of about 10 microns. This micromanufacturing technique is however limited to production of nonconducting polymer structures. Another micromanufacturing method, namely “instant masking” or also known as “electrochemical fabrication” or EFAB involves the production of an elastomeric mask using photolithography. The mask is then pressed against the substrate in an electrodeposition bath so that the elastomer conforms to substrate and excludes plating solution in contact areas. Areas that are not masked are electrodeposited as the mirror image of the mask. Using a sacrificial filler, complex 3D shapes are microfabricated. This “instant masking” micromanufacturing / micromachining method makes it also possible to produce overhangs, arches…etc. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff...

    Keys Splines and Pins, Square Flat Key, Pratt and Whitney, Woodruff, Crowned Involute Ball Spline Manufacturing, Serrations, Gib-Head Key from AGS-TECH Inc. Keys & Splines & Pins Manufacturing Other miscellaneous fasteners we provide are keys, splines, pins, serrations. KEYS: A key is a piece of steel lying partly in a groove in the shaft and extending into another groove in the hub. A key is used to secure gears, pulleys, cranks, handles, and similar machine parts to shafts, so that the motion of the part is transmitted to the shaft, or the motion of the shaft to the part, without slippage. The key may also act in a safety capacity; its size can be calculated so that when overloading takes place, the key will shear or break before the part or shaft breaks or deforms. Our keys are also available with a taper on their top surfaces. For tapered keys, the keyway in the hub is tapered to accommodate the taper on the key. Some major types of keys we offer are: Square key Flat key Gib-Head Key – These keys are the same as flat or square tapered keys but with added head for ease of removal. Pratt and Whitney Key – These are rectangular keys with rounded edges. Two-thirds of these keys sit in the shaft and one-third in the hub. Woodruff Key – These keys are semicircular and fit into semicircular keyseats in the shafts and rectangular keyways in the hub. SPLINES: Splines are ridges or teeth on a drive shaft that mesh with grooves in a mating piece and transfer torque to it, maintaining the angular correspondence between them. Splines are capable of carrying heavier loads than keys, permit lateral movement of a part, parallel to the axis of the shaft, while maintaining positive rotation, and allow the attached part to be indexed or changed to another angular position. Some splines have straight-sided teeth, whereas others have curved-sided teeth. Splines with curved-sided teeth are called involute splines. Involute splines have pressure angles of 30, 37.5 or 45 degrees. Both internal and external spline versions are available. SERRATIONS are shallow involute splines with 45 degree pressure angles and are used for holding parts like plastic knobs. Major types of splines we offer are: Parallel key splines Straight-side splines – Also called parallel-side splines, they are used in many automotive and machine industry applications. Involute splines – These splines are similar in shape to involute gears but have pressure angles of 30, 37.5 or 45 degrees. Crowned splines Serrations Helical splines Ball splines PINS / PIN FASTENERS: Pin fasteners are an inexpensive and effective method of assembly when loading is primarily in shear. Pin fasteners can be separated into two groups: Semipermanent Pinsand Quick-Release Pins. Semipermanent pin fasteners require application of pressure or the aid of tools for installation or removal. Two basic types are Machine Pins and Radial Locking Pins. We offer the following machine pins: Hardened and ground dowel pins – We have standardized nominal diameters between 3 to 22 mm available and can machine custom sized dowel pins. Dowel pins can be used to hold laminated sections together, they can fasten machine parts with high alignment accuracy, lock components on shafts. Taper pins – Standard pins with 1:48 taper on the diameter. Taper pins are suitable for light-duty service of wheels and levers to shafts. Clevis pins - We have standardized nominal diameters between 5 to 25 mm available and can machine custom sized clevis pins. Clevis pins can be used on mating yokes, forks and eye members in knuckle joints. Cotter pins – Standardized nominal diameters of cotter pins range from 1 to 20 mm. Cotter pins are locking devices for other fasteners and are generally used with a castle or slotted nuts on bolts, screws, or studs. Cotter pins enable low-cost and convenient locknut assemblies. Two basic pin forms are offered as Radial Locking Pins, solid pins with grooved surfaces and hollow spring pins which are either slotted or come with spiral-wrapped configuration. We offer the following radial locking pins: Grooved straight pins – Locking is enabled by parallel, longitudinal grooves uniformly spaced around the pin surface. Hollow spring pins – These pins are compressed when driven into holes and pins exert spring pressure against the hole walls along their entire engaged length to produce locking fits Quick-release pins: Available types vary widely in head styles, types of locking and release mechanisms, and range of pin lengths. Quick-release pins have applications such as clevis-shackle pin, draw-bar hitch pin, rigid coupling pin, tubing lock pin, adjustment pin, swivel hinge pin. Our quick release pins can be grouped into one of two basic types: Push-pull pins – These pins are made with either a solid or hollow shank containing a detent assembly in the form of a locking lug, button or ball, backed up by some sort of plug, spring or resilient core. The detent member projects from the pins surface until sufficient force is applied in assembly or removal to overcome the spring action and to release the pins. Positive-locking pins - For some quick-release pins, the locking action is independent of insertion and removal forces. Positive-locking pins are suited for shear-load applications as well as for moderate tension loads. CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Solar Power Modules, Rigid, Flexible Panels, Thin Film, Monocrystaline

    Solar Power Modules - Rigid - Flexible Panels - Thin Film - Monocrystalline - Polycrystalline - Solar Connector available from AGS-TECH Inc. Manufacturing and Assembly of Customized Solar Energy Systems We supply: • Solar power cells & panels, solar energy powered devices and custom assemblies for creating alternative energy. Solar power cells can be the best solution for stand-alone equipment located in remote areas by self powering your equipment or devices. The elimination of high maintenance due to battery replacement, elimination of the need for installing power cables to connect your equipment to main power lines can give a big marketing boost to your products. Think about it when you design stand alone equipment to be located in remote areas. In addition, solar power can save you money by reducing your dependence on electrical energy purchased. Remember, solar energy cells can be flexible or rigid. Promising research is ongoing on spray-on solar cells. The energy generated by solar devices is generally stored in batteries or used immediately after generation. We can supply you the solar cells, panels, solar batteries, inverters, solar energy connectors, cable assemblies, entire solar power kits for your projects. We can also help you during the design phase of your solar device. By choosing the right components, the right solar cell type and maybe using optical lenses, prisms...etc. we can maximize the amount of power generated by the solar cells. Maximizing solar power when available surfaces on your device is limited can be a challenge. We have the right expertise and optical design tools to achieve this. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM Make sure to download our comprehensive electric & electronic components catalog for off-shelf products by CLICKING HERE . This catalogue does have products such as solar connectors, batteries, converters and more for your solar related projects. If you cannot find it there, contact us and we will send you information on what we have available. If you are mostly interested in our large scale domestic or utility scale renewable alternative energy products and systems including solar systems, then we invite you to visit our energy site http://www.ags-energy.com CLICK Product Finder-Locator Service PREVIOUS PAGE

  • Industrial Computers, Industrial PC, Rugged Computer, Janz Tec,Korenix

    Industrial Computers - Industrial PC - Rugged Computer - Janz Tec - Korenix - AGS-TECH Inc. - New Mexico - USA Industrial PC, Industrial Computers Industrial PCs are used mostly for PROCESS CONTROL and/or DATA ACQUISITION. Sometimes, an INDUSTRIAL PC is simply used as a front-end to another control computer in a distributed processing environment. Custom software can be written for a particular application, or if available an off-the-shelf package can be used to provide a basic level of programming. Among the industrial PC brands we offer is JANZ TEC from Germany. An application may simply require the I/O such as the serial port provided by the motherboard. In some cases, expansion cards are installed in order to provide analog and digital I/O, specific machine interface, expanded communications ports,…etc., as required by the application. Industrial PCs offer features different from consumer PCs in terms of reliability, compatibility, expansion options and long-term supply. Industrial PCs are generally manufactured in lower volumes than home or office PCs. A popular category of industrial PC is the 19-INCH RACKMOUNT FORM FACTOR. Industrial PCs are typically more expensive than comparable office style computers with similar performance. SINGLE-BOARD COMPUTERS and BACKPLANES are used primarily in Industrial PC systems. However, the majority of industrial PCs are manufactured with COTS MOTHERBOARDS. Construction and Features of Industrial PCs: Virtually all Industrial PCs share an underlying design philosophy of providing a controlled environment for the installed electronics to survive the rigors of the plant floor. The electronic components themselves may be selected for their ability to withstand higher and lower operating temperatures than typical commercial components. - Heavier and rugged metal construction as compared to the typical office non-rugged computer - Enclosure form factor that includes provision for mounting into the surrounding environment (such as 19'' rack, wall mount, panel mount, etc.) - Additional cooling with air filtering - Alternative cooling methods such as using forced air, a liquid, and/or conduction - Retention and support of expansion cards - Enhanced Electromagnetic Interference (EMI) filtering and gasketing - Enhanced environmental protection such as dust proofing, water spray or immersion proofing, etc. - Sealed MIL-SPEC or Circular-MIL connectors - More robust controls and features - Higher grade power supply - Lower consumption 24 V power supply designed for use with DC UPS - Controlled access to the controls through the use of locking doors - Controlled access to the I/O through the use of access covers - Inclusion of a watchdog timer to reset the system automatically in case of a software lock-up DOWNLOAD OUR BROCHURES AND CATALOGS BY CLICKING ON THE BLUE TEXT BELOW: Catalog for Vandal-Proof IP65/IP67/IP68 Keyboards, Keypads, Pointing Devices, ATM Pinpads, Medical & Military Keyboards and other similar Rugged Computer Peripherals ATOP TECHNOLOGIES compact product brochure ATOP Technologies Product List 2021) DFI-ITOX brand Industrial Motherboards brochure DFI-ITOX brand embedded single board computers brochure ICP DAS brand PACs Embedded Controllers & DAQ brochure JANZ TEC brand compact product brochure Kiosk Systems (We private label these with your brand name and logo if you wish) Kiosk Systems Accessories Guide (We private label these with your brand name and logo if you wish) KORENIX brand compact product brochure Mobile Computers for Enterprises (We private label these with your brand name and logo if you wish) To choose a suitable Industrial PC for your project, please go to our industrial computer store by CLICKING HERE. Dowload brochure for our DESIGN PARTNERSHIP PROGRAM Some of our popular industrial PC products from Janz Tec AG are: - FLEXIBLE 19'' RACK MOUNT SYSTEMS : The areas of operation and requirements for 19'' systems are very wide within the industry. You can choose between industrial main board technology and slot CPU technology with the use of a passive backplane. - SPACE SAVING WALL MOUNTING SYSTEMS : Our ENDEAVOUR series are flexible industrial PCs incorporating industrial components. As the standard, slot CPU boards with passive backplane technology are used. You can select the product matching your requirements, or you can find out more about individual variations of this product family by contacting us. Our Janz Tec industrial PCs can be combined with conventional industrial control systems or PLC controllers. CLICK Product Finder-Locator Service PREVIOUS PAGE

bottom of page